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Stability of Quantum Breathers
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Using two methods we show that a quantized discrete breather in a 1D lattice is stable. One method uses
path integrals and compares correlations for a (linear) local mode with those of the quantum breather. The
other takes a local mode as the zeroth order system relative to which numerical, cutoff-insensitive
diagonalization of the Hamiltonian is performed.
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Discrete breathers [1] are nondispersive classical exci-
tations that are known to be significant in a variety of
natural systems. Recent reviews [2,3] give examples and
references. The quantum theory of (discrete) breathers
does not yield easily to numerical simulation and is not
as fully developed.

Over the past decade there has developed a body of
literature [4] in which it is claimed that unlike classical
breathers, the quantum version cannot in principle be
stable. This conclusion is reached by considering the effect
on the phonon field of the rapidly oscillating particle at the
core of the breather. Lifetimes have been calculated, and
for alkali halides are about 10 ns. Other work, also treating
the breather as an external classical force, [5], challenges
this estimate and suggests stability in the limit of large
systems.

A fully quantum result [6] found eigenstates of a model
Hamiltonian with a dropoff in correlation function that is
strongly suggestive of breathers, although translational
invariance prevents complete localization. As recognized
in [6] (and below), such approaches require cutoffs which
may affect the conclusion.

In this Letter we make a two-pronged attack. We do a
numerical diagonalization, similar to that of [6], incorpo-
rating methods to reduce cutoff effects and to provide
direct evidence of localization. In addition, we do a path
integral calculation, treating the breather fully quantum
mechanically, similar to Feynman’s polaron [7]. The ap-
proximations are different: in one case a cutoff, in the other
semiclassical asymptotics.

The Hamiltonian in [6] is

H �
XN
k�0

�
1

2
p2
k �

1

2
!2
sx

2
k �

1

2
!2

0��x�
2
k �

1

4
�x4

k

�
; (1)

with x0 � xN�1, ��x�k � xk � xk�1, and xk 2 R. We also
consider interactions of the form

P
��x�4k, which resembles

our own model [8]. An important simplification is to
remove all nonlinear interactions except those of particle 0,
the one with large amplitude motion. This strategy has
been adopted by other authors and we checked whether
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this affects the general properties of the classical breather.
It does not [9], a consequence of the remarkable breather
property, namely, that a central atom vibrates strongly,
while its neighbors hardly move (so that nonlinear forces
are negligible for them). Claims that the breather decays
are based on this same approximation.

We emphasize the reasoning leading from a translation-
ally invariant breather to what is effectively a nonlinear
local mode. Although quantum tunneling requires that
the breathers form a band, information on the classical
breather corresponding to our excitation—including in
the presence of moderate noise—indicates that tunneling
is small, allowing us to drop translational invariance. This
perspective has been adopted by others as well [4,5].
Having done this, we go beyond previous work by quantiz-
ing the breather atom itself. In other approaches one has
de facto a local mode, interacting with the lattice. We retain
the nonlinear interactions (implicitly), while also quantiz-
ing the principal breather atom.

In both our approaches we make use of a linear local
mode. If in (the modified) Eq. (1), one replaces �x4

0=4 by
!2

1x
2
0=2 with large !1, the resulting system is well under-

stood both classically and quantum mechanically. You
have both classical confinement and quantum stability.
Our use of the local mode parallels others’ treatment of
the quantum breather as a phonon field in the presence of
rapid classical oscillations. The impact of the breather
cannot be considered small. They treat that impact by
means of a classical oscillating field. We use the quantum
local mode. For the path integral, that use is the compari-
son with local mode correlation functions. For the diago-
nalization scheme we perturb around that mode.

Path integral approach.—The path integral allows the
elimination of quadratic degrees of freedom at the expense
of introducing nonlocal self coupling. Dropping quartic
terms for all but x0, the Lagrangian is
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FIG. 1. dS=d� (essentially a correlation function) has mark-
edly different behavior for large and small end point (‘‘a’’)
values for q. Both for a linear local mode (as a function of
!1) and for the breather (function of �), a large value of a
demands relatively large correlations when neither the local
mode nor the breather is present (!1 	 �	 0), but that corre-
lation is wiped out for a large parameter, for which the breather
or local mode is effectively decoupled from the rest of the ring.
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The fictitious coupling, �x0�xm � xN�1�m�, allows the
study of localization for m far from 0. The derivative (at
� � 0) of the propagator provides a �0-m� correlation. By
standard methods [7,10,11] we path integrate degrees of
freedom 1 to N, which form a chain with known normal
modes. These modes see a forcing term from the so-far-
unintegrated x0�t�. The propagator, G, is a function of the
end points of all xk. One takes the matrix element of G in
the chain ground state (à la [7]) and divides by correspond-
ing free chain matrix elements. The result is

G �qf; T; qi; 0� �
Z

Dqei=@�S0�Seff �; (3)

where q � x0, the action S0 arises from the original L sans
chain terms, and Seff comes from the integration over chain
degrees of freedom. Specifically
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and �2
n � !2

s � 4!2
0sin2�n�=2�N � 1�� is the spectrum of

the chain.
We study G in the stationary phase approximation;

that is, we evaluate S0 � Seff along extremal ‘‘classical
paths.’’ In principle, one can get the ground state en-
ergy by going to large imaginary times, for which
G�q;�iT; q� 	 j��q�j2 exp��TE0�. In practice, S!
const and @2S=@qi@qf gives an exponentially small
quantity (as for the harmonic oscillator). Such preci-
sion was not numerically possible; in any case, know-
ing the energy does not establish localization. Note that
��q� is the overlap of the ground state of the �N � 1�-atom
ring with that of the N-atom chain.

To study localization we compare G with the propagator
of a corresponding local mode, i.e., a system in which
�q4=4 is replaced by !2

1q
2=2 for appropriate !1 (	

����
�
p

).
To derive Glocal we redo the process described above. K is
the same. For this system we know that as!1 increases, the
vibrations are localized near 0. How can that be seen in
Glocal or S? The method is to go to imaginary time and vary
� (the coupling to atom #m 
 N=3).

Before presenting results we comment on numerics. The
extremal solves a two-time boundary-value problem with a
nonlocal interaction. In the linear case we discretize time,
so that d2=dt2 becomes a difference matrix, nearly diago-
nal, but the K matrix is spread out. Call the resulting
06550
operator B � �d2=dt2� � � � � . Take q to be a column vec-
tor, qj$q�tj�. For q�0��a, q�T� � b, and � � tk�1 � tk,

the extremal is q�B�1q�0�, where q�0�j ���a;0; . . . ;0;b�=
�2 (cf. [12]). Note that S � q _q=2jT0 . To deal with computer
limits on �, we calculated S for the smallest practical � and
for larger values. S as a function of �was then extrapolated
to � � 0. This technique was validated for the demanding
energy calculation, involving the exponentially small
@2S=@a@b. Here the answer is known from the classical
chain and ring frequencies. (E0 also requires a T ! 1
extrapolation.) The function �, a Gaussian whose spread
1-2



TABLE I. Principal components of the breather state. The first
4 columns refer to the 4 symmetric phonons in a 6-atom ring. (N
atoms ) �N=2� � 1 symmetric modes.) Row 1: frequencies
(local mode is highest). Subsequent rows: number-operator
values. Fifth column: norm squared of the mode (log10 in
parentheses). Cutoffs: local mode 13, others 6. For this state,
first order perturbation theory is good to 0.3%. The last column
reports the same calculation with cutoff 8.

0.749 0.987 1.19 2.04 Probability (6) Probability (8)

0 0 0 1 0.9947 0.9952
0 0 0 3 3:315 ��3� 3:321 ��3�
0 1 0 0 1:122 ��3� 0:848 ��3�
0 0 1 0 5:748 ��4� 4:345 ��4�
1 0 0 0 1:545 ��4� 1:167 ��4�
0 1 0 2 1:004 ��4� 0:754 ��4�
1 0 0 2 2:866 ��5� 2:152 ��5�
0 0 1 2 2:303 ��5� 1:728 ��5�
0 0 0 5 3:670 ��6� 3:627 ��6�
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can be calculated by standard methods, provided another
check. Numerically that spread can be extracted by calcu-
lating S with varying end points and fitting the slope of

���
S
p

.
This too confirmed the method.

With q4 the nonlinear, nonlocal two-time boundary-
value problem cannot be solved by matrix inversion. Our
method was a variation of [7], defining a subsidiary vari-
able z�t� �

R
T
0

~K1�jt� sj�q�s�ds, where the subscript on
~K1 indicates that ~K [�iK��iu�with T ! �iT] is replaced
by a single ‘‘cosh’’ with optimized parameters, in fact an
excellent approximation. This allowed a local boundary-
value numerical technique, with a self-consistency demand
on z�0�. Because of the approximation, we further at-
tempted small variations to lower the true action, but
they resulted in essentially no change.

Figure 1 shows the results of changing � for the local
mode (a) and for the breather (b). Localization is deduced
from the variation of dS=d� as a function of both a ( �
qf � qi) and the coupling, !1 or �. All runs are for T � 2,
which (given the energy scale) allows many states besides
the ground state to survive in a spectral sum for G.
Therefore a large a boundary condition selects for the
excited states, in particular, for a localized excited state
(breather or local mode) if there is one. When the coupling
is small, there is no localized state; forcing q to be large
forces all atoms on the ring to depart from their usual
positions. Hence the large magnitude of dS=d� on the
left of both figures—for the largest a values. (Small a
has almost no effect even for small coupling.) For large
coupling, however, there is a localized state: both for the
linear (!1) and nonlinear (�) systems, forcing q to depart
from 0 has almost no effect on a distant atom. As further
checks, in [9] we show that dS=d� ! 0 for �! 1, and
that for both linear and nonlinear cases dS=d� has essen-
tially the same behavior as T grows [13].

Diagonalizing a truncated Hamiltonian.—The Hamil-
tonian (1) is made finite dimensional by using a phonon
basis and imposing a cutoff on the level of phonon excita-
tion. A low cutoff is needed because of the proliferation of
dimensions in the (implicit) tensor product of phonon
operators. The same problem was faced in [6] and we
alleviate it by the following strategy. Instead of perturbing
around free modes, we use modes of a fictitious (linear)
system with a local mode at site 0. This reduces the
amplitudes of other modes in the quantum breather.
Equation (1), with nonlinearity confined to x0, is written
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with VI � �x4
0=4�!2

1x
2
0=2 the perturbation. A variation

on Eq. (1) uses a nonlinear coupling, that is, terms
���x�4k=4. Here too, we drop nonlinear terms except those
(two) that include x0, and add and subtract corresponding
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quadratics. As for (1), the classical dynamics is substan-
tially the same.

We outline the calculation: The classical local mode
problem is solved, giving rise to (truncated) creation and
annihilation operators in terms of which the perturbation is
expressed. The operator x̂0 �

P
�a‘ � a

y
‘ �u‘�0�=

���������
2�‘

p
,

where u‘ is the ‘th mode of the system and ‘ � 0 is the
local mode. The key to !1’s effectiveness lies in fu‘�0�g.
For !1 � 0 these are all of about the same magnitude (for
N � 20 they are 	0:3 for those not zero by symmetry).
But with !1 � 3, u0�0� 	 0:988, while the (nonzero)
others average 	0:04. This severely reduces the ampli-
tudes of phonons other than the local mode in the eigen-
states of the full Hamiltonian.

With � � 8, !0 � 1, and !s � 1 (used in [6]), and for
!1 � 2:5 the true eigenfunction having greatest overlap
with the first excited state of the local mode is shown in
Table I. Clearly the local mode dominates. The next largest
component is the thrice excited local mode, which is
merely a shape adjustment. Other modes barely make the
10�3 level. Note that the highest excitation level for other
phonons is 3, indicating that a cutoff of 6 is safe. In fact,
even to probability 10�8 there is no excitation higher than 3
except for the local mode.

As a check of cutoff sensitivity we repeated this calcu-
lation with a cutoff of 8 (but the local mode still at 13). The
results are in the last column of Table I. There is little
sensitivity to the change—not only in the probabilities but
in the composition of the state. Increasing ring size and
reducing the cutoff preserves the pattern. For a ring of
size 8 and a cutoff of 5 (10 for the local mode), the state
was again dominated (probability 0.992) by the local
mode, with the next contributor an excited local mode.
Going to yet larger rings (size 10, and lower cutoff)
preserves the pattern, with the first nonlocal mode phonon
1-3
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FIG. 2. Survival as a function of time; the initial state is the
singly excited local mode.
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contributing at probability level 10�4. Other breather states
yield the same result: accuracy of perturbation theory,
insensitivity to cutoff change, and eigenfunction domina-
tion by local modes.

For nearest-neighbor nonlinearity the story is the same.
Systematic study of a size 8 ring with cutoffs of 6, 8 and 12,
showed that the local mode dominated the Hamiltonian’s
ground state.

The message of this dominance is that the eigenstates of
the Hamiltonian are well localized, which is to say the
quantized breather states are stable.

Quantum time dependence.—Although we have shown
the breather to be dominated by the local mode, the point
has been raised that by Fermi’s golden rule any coupling to
a continuum implies instability. This is not true. Some
years ago it was found that quantum systems with ample
continuum coupling nevertheless could survive indefinitely
[14]. This departure from ordinary decay depended on
smoothness and threshold properties of the coupling. A
related matter concerns normalizable bound states in the
continuum [15].

In Fig. 2 we show jh 0j exp��iHt=@�j 0ij
2 for  0 a

local mode phonon and H the full Hamiltonian. As in
[14], initial decay is followed by stabilization bounded
away from zero. In [14] the amplitude was typically a
few tens of percent, but here, consistent with Table I, the
amplitude stays near one. Despite the many connecting
states, after a short time amplitude ceases to leak. The
explanation [14] is that the true eigenstate of the
Hamiltonian has order unity overlap with the initial state.

Note that stability may not persist in all dimensions;
certainly threshold features of the density of states and
spectrum are affected by dimension, and the usual intu-
itions regarding Fermi’s golden rule may again hold sway.
In [8] we made the point that the symmetry breaking of the
Jahn-Teller effect makes this a one-dimensional problem,
significantly enhancing the possibility of classical breath-
06550
ers. The same is likely to be true quantum mechanically. It
may even be that this plays a role in the temperature-
dependent decay of the breather (through an effective
increase in dimension), as evidenced by the high-
temperature disappearance of anomalous decay in doped
alkali halides [16]. This issue should be addressable using
the path integral method.

In conclusion, we have shown that although quantum
tunneling does in principle convert the classical breather
into a Bloch state, when the ability to tunnel is removed, an
initially localized pulse of energy can be trapped indefi-
nitely as a quantum excitation.
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