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Breaking of Chiral Symmetry and Spontaneous Rotation in a Spinor Bose-Einstein Condensate
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We show that a spin-1 Bose-Einstein condensate with ferromagnetic interactions spontaneously
generates a topological spin texture, in which the m � �1 components of the magnetic sublevels form
vortices with opposite circulations. This phenomenon originates from an interplay between ferromagnetic
interactions and spin conservation.
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The Mermin-Ho texture [1] in superfluid 3He describes
an interesting thermodynamic equilibrium state, in which a
circulation remains nonvanishing in a cylindrically sym-
metric vessel, despite the vessel being at rest. This phe-
nomenon is due to the fact that the boundary condition at
the surface of the vessel imposes a topological constraint
on the l vector. In this Letter, we show that the spontaneous
formation of such a topological spin texture also occurs in
a Bose-Einstein condensate (BEC) of atomic gases with
spin degrees of freedom [2– 4].

Topological spin structures in a spinor BEC have been
realized by Leanhardt et al. [5] using a phase imprinting
technique, and the stability of such coreless vortices has
been studied [6–8]. Recently, it was predicted [9,10] that
the dipolar interaction also creates a coreless vortex state
through a mechanism similar to the Einstein–de Haas
effect.

In contrast to the Mermin-Ho texture in 3He, the physi-
cal origin of the spin texture formation proposed in this
Letter is the interplay between ferromagnetic interactions
and spin conservation. Consider a spin-1 BEC with ferro-
magnetic interactions in an m � 0 magnetic sublevel. The
spin-exchange collisions between the atoms transfer the
m � 0 population into m � �1 ones via 0� 0!
1� ��1�. As a consequence, magnetization in the x-y
plane may arise due to the ferromagnetic nature of the
interaction. However, uniform magnetization of the entire
system is prohibited because of spin conservation, which
results in various spin textures [11–13]. In this Letter, we
show that the topological spin texture is spontaneously
generated through spin-exchange dynamics under spin
conservation, where the m � �1 components have vorti-
ces with opposite circulations. It follows from the symme-
try of the Hamiltonian that there are two degenerate
textures: the m � 1 and �1 components have � and �
vortices, or � and � vortices. We show that the symmetry
between these two textures is spontaneously broken in the
course of the dynamics even when the initial state pos-
sesses chiral symmetry.

We consider a system of spin-1 Bose atoms with massM
confined in a potential V. The Hamiltonian of the system is
06=96(6)=065302(4)$23.00 06530
given by [3,4]
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where  ̂m is the field operator of the atom in the magnetic
sublevel m � 0, �1, H0 � �@

2r2=�2M� � V, and F is
the spin-1 matrix. The spin-independent and spin-
dependent interactions are characterized by g0 �
4�@2�a0 � 2a2�=�3M� and g1 � 4�@2�a2 � a0�=�3M�, re-
spectively, where aS is the s-wave scattering length for the
scattering channel with total spin S. In the case of spin-1
87Rb, g1 is negative and the ground state is ferromagnetic
[4,14].

When the potential V is axisymmetric with respect to
the z axis, the Hamiltonian (1) is invariant under spatial
reflection with respect to an arbitrary plane containing
the z axis, e.g., �x; y� ! ��x; y�. This transformation
changes a clockwise vortex/ e�i� into a counterclockwise
vortex / ei� with azimuthal angle �. Hence, if only one of
them is realized spontaneously, we call it chiral symmetry
breaking. From the symmetry of the Hamiltonian, the total
spin vector and the z component of the orbital angular
momentum are conserved.

We consider the case in which the initial state is in the
m � 0 mean-field ground state satisfying

�H0 � g0j�0j
2��0 � �0�0: (2)

If the m � �1 components are exactly zero, �0 is a sta-
tionary state of the multicomponent Gross-Pitaevskii (GP)
equations,
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where  m is the macroscopic wave function, n �P
mj mj

2, Fz�j 1j
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 	0 �1�. The stability against excitations in the m � �1
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FIG. 1 (color). Real and imaginary parts of the lowest
Bogoliubov energies "�‘� for ‘ � 0;�1, where the m � �1
components of the eigenfunction are proportional to e�i‘�.
The two energies "��1� are degenerate due to the axisymmetry
of the system. We have taken the parameters of spin-1 87Rb
atoms, where the spin-independent interaction strength g2D

0 is
related to the spin-dependent strength g2D

1 by g2D
0 � �216:1g2D

1 .
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components is analyzed by the Bogoliubov–de Gennes
equations:
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where u�‘�m and v�‘�m are the eigenfunctions for a Bogoliubov
mode with eigenenergy "�‘�. From the axisymmetry of the
system, the Bogoliubov modes can be classified according
to the angular momentum ‘, for which u�‘�m / ei‘� and
v�‘�m / e�i‘�. We find that u�‘�1 couples with v�‘�	�1 in
Eq. (4), and hence the excitation of the m � 1 component
with vorticity ‘ is accompanied by them � �1 component
with vorticity �‘, as a consequence of the orbital angular-
momentum conservation. If all the eigenenergies are real,
the state �0 is dynamically stable. If there exist complex
eigenenergies, the corresponding modes grow exponen-
tially and the state �0 is dynamically unstable.

For simplicity, we restrict ourselves to two-dimensional
(2D) space. This situation can be realized by a tight
pancake-shaped potential V � M!2�x2 � y2 � �2z2�=2
with �� 1, where the axial confinement energy is so large
that the dynamics in the z direction are frozen. In this case,
the interaction strengths can be characterized by the di-
mensionless parameters [15] g2D

j � gj
�=�2���1=2N=

�a3
ho@!�, where N is the number of atoms, aho �


@=�M!��1=2, and j � 1; 2.
We numerically solve Eq. (2) by the imaginary-time

propagation method and diagonalize Eq. (4) to obtain the
Bogoliubov spectrum for the state �0. Figure 1 shows the
lowest Bogoliubov energies for ‘ � 0 and�1 as a function
of g2D

1 , where g2D
0 is determined by g2D

0 =g2D
1 � g0=g1 ’

�216:1, which is the ratio for spin-1 87Rb [16]. In the
parameter regime shown in Fig. 1, the three modes exhibit
complex eigenenergies. A crucial observation is that there
is a region (�3:9 * g2D

1 * �10:7) in which only "��1� are
imaginary. This indicates that only these two modes are
dynamically unstable in this region, where one mode has
vortices / e�i� and the other mode has vortices / e�i� in
the m � �1 components. These two modes are degenerate
because of the chiral symmetry of the system. In this
region, we expect that the m � �1 components start to
rotate, despite there being no external rotating drive ap-
plied to the system.

In order to confirm the spontaneous rotation phenome-
non predicted above, we numerically solve the GP Eq. (3)
in 2D using the Crank-Nicolson scheme. The inter-
action strengths are taken to be g2D

0 � 2200 and g2D
1 �

�10:18, with the ratio g2D
0 =g2D

1 again chosen to be that of
spin-1 87Rb. For this set of interaction parameters,
Im"��1�=�@!� � 0:0707 and all the other Bogoliubov en-
ergies are real. The initial state is the ground state of Eq. (2)
for the m � 0 component plus a small amount of ran-
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dom noise in the m � �1 component. To extract the
Bogoliubov excitations from  m�t�, we define [17]

P�1

��������
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ei�0t=@u��1�

1  1�t��e�i�0t=@v��1�
�1  
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��������
2
;

(5)

which represents the degree of excitation in the modes
u��1�

1 / v��1�	
�1 / e�i�. Figure 2 shows the time evolution

of P�1 and the density-phase profile of each component at
!t � 130. We find that P�1 grow according to
exp�2 Im"��1�t=@�, with their initial ratio P�1=P1 ’ 7:5
kept constant, resulting in exponential growths in the an-
gular momenta of them � �1 components. Thus, them �
�1 components spontaneously rotate if the initial noise has
angular-momentum fluctuations.

We consider an initial state of the system in which the
chiral symmetry is preserved to great accuracy, say,
P�1=P1 � 1:0002. The result in Fig. 2 indicates that vor-
tices will not be created as long as the linear stability
analysis is applicable. For a longer time scale, however,
the chiral symmetry is spontaneously broken due to a
nonlinear effect. Figure 3(a) shows the time evolution of
n�1 �

R
drj �1j

2=N and the orbital angular momentum
per particle L�1 � �i

R
dr 	�1@� �1=�Nn�1� for the

m � �1 component. The m � 1 component is given by
n1 ’ n�1 and L1 ’ �L�1 from spin and orbital angular-
momentum conservation. The initial value for the m �
�1 component is taken to be  �1 � 10�4r�ei� �
1:0001e�i���0, which gives P�1=P1 ’ 1:0002. As long
as this ratio is kept constant, the formation of the vortex
states shown in the insets of Fig. 2 is not expected. In fact,
as shown in Fig. 3(b), no vortex is created around the first
peak of n�1 at !t ’ 100. However, at !t ’ 160, L�1 starts
to deviate from 0 (solid blue curve) and the chiral symme-
2-2



FIG. 3 (color). (a) Time evolution of the fraction n�1 (dashed
curves) and the orbital angular momentum per particle L�1

(solid curves) in the m � �1 component with (� � 0:03, red
curves) and without (� � 0, blue curves) dissipation. The inter-
action strengths are the same as in Fig. 2. The initial state is
given by  0 � �0,  �1 � 10�4r�ei� � 1:0001e�i���0, and
 1 � 0, where �0 is the ground state solution of Eq. (2). (b)–
(d) Snapshots of the density-phase profiles and spin textures. The
heights of the vertical lines in the density-phase profiles show
j mj

2aho=N, which is 0.001 for m � �1 and 0.0025 for m � 0.
The length of the vector in the bottom panels is proportional to
�F2

x � F
2
y�

1=2 and the color represents �F2
x � F

2
y�

1=2=�j �1j
2 �

j 0j
2 � j 1j

2�. The size of the frame is 16� 16 for the density-
phase profiles and 12� 12 for the spin textures in units of aho.

FIG. 2 (color). Degree of Bogoliubov excitation P�1 in
Eq. (5). The interaction strengths are g2D

0 � 2200 and g2D
1 �

�10:18. The initial state is the ground state �0 of Eq. (2) for the
m � 0 component plus a small amount of random noise in the
m � �1 component. The dashed line is proportional to e0:141!t.
The insets show the density-phase profiles at !t � 130, where
the size of the frame is 16� 16 in units of aho � 
@=�M!��

1=2.
The heights of the vertical lines in the insets indicate
j mj

2a2
ho=N, which is 0.001 for m � �1 and 0.0025 for m � 0.
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try is dynamically broken. Consequently, the vortex states
emerge in the m � �1 components as shown in Fig. 3(c).

The instability in the state with chiral symmetry
[Fig. 3(b)] against forming the rotating state [Fig. 3(c)]
implies that the energy of the latter is lower than that of the
former. In order to confirm this, we take energy dissipation
into account by replacing i on the left-hand side of Eq. (3)
with i� � [18]. The time evolution with � � 0:03 [19] is
shown by the red curves in Fig. 3(a) and clearly indicates
that the energy of the rotating state [Fig. 3(d)] is lower than
that of the state having chiral symmetry [Fig. 3(b)]. For
� � 0, L�1 oscillates with a large amplitude due to the
excess energy released from the initial state, while for � �
0:03, the sign of the angular momentum is unchanged.

The bottom panels in Figs. 3(b)–3(d) show the spin
vector distributions. In Fig. 3(b), the magnetic domains
in the opposite spin directions are separated by a domain
wall at x � 0. On the other hand, topological spin struc-
tures are formed in Figs. 3(c) and 3(d). The underlying
physics of the spin structure formation is the interplay
between the ferromagnetic interaction and spin conserva-
tion. The growth in the spin vectors must be accompanied
by spatial spin structure formation due to the conservation
of the total spin angular momentum. It should be noted that
the area in which the length of the spin vector is long is
larger in Figs. 3(c) and 3(d) than in Fig. 3(b), since the spin
vectors must vanish at the domain wall in the latter. This is
why the energy of the state in Fig. 3(d) is lower than that of
Fig. 3(b). That is, the formation of the topological spin
structure gains more (negative) ferromagnetic energy than
the formation of the domain structure.
06530
The above energy argument concerning the spin domain
and topological structures can be reinforced by applying
the variational method. We assume a variational wave
function to be

0
~�0

0

0
@

1
A� c cos�

u�1�1

0
ei�v�1��1

0
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1
CA� c sin�
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1
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0
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where ~�0 � �j�0j
2 � j 1j

2 � j �1j
2�1=2 so that the total

density n is kept to be j�0j
2 irrespective of the values of the

variational parameters, reflecting the fact that the spin-
exchange process hardly changes the total density because
g0 � jg1j for spin-1 87Rb atoms. We minimize the energy
of the system calculated from Eq. (6) with respect to c, �,
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FIG. 4 (color). Energy and density-phase profiles obtained by
the variational method with Eq. (6). The interaction strengths are
the same as in Fig. 2. The size of the frame of the insets is 16�
16 in units of aho and the heights of the vertical lines show
j mj2a2

ho=N, which is 0.0005 for m � �1 and 0.0025 for m � 0.
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and �0 for a given �, as shown in Fig. 4. The state at
� � �=4, which is similar to the state shown in Fig. 3(b),
has a maximum energy, while the topological spin states at
� � 0 and �=2 have minimum energy, in agreement with
the above discussion.

The results presented above can be realized using cur-
rent experimental setups. For example, when the radial and
axial trapping frequencies are ! � 100� 2� Hz and
!z � 100!, respectively, the interaction parameters for
Figs. 2–4 correspond to N ’ 8880 spin-1 87Rb atoms.
The time scale for the appearance of the topological spin
structure (e.g., !t� 300 for the initial condition in Fig. 3)
is �0:5 s. If the ratio jg1=g0j can be increased by decreas-
ing g0 using a Feshbach resonance or by using other atomic
species, we can decrease the time scale, e.g., to about 1=10
for jg1=g0j � 1.

In the presence of an external magnetic field B, the linear
and quadratic Zeeman terms enter the Hamiltonian (1).
Since the total spin is conserved, the linear Zeeman term
only rotates the spin at the Larmor frequency and does not
affect the dynamics. When the magnetic field is applied in
the z direction, the quadratic Zeeman effect raises the
energy of the m � �1 components relative to that of the
m � 0 component. If the quadratic Zeeman energy ex-
ceeds the ferromagnetic energy, the m � 0 state becomes
the ground state and no excitation to the m � �1 compo-
nents occurs, which is the case for B * 400 mG with ! �
100� 2� Hz, !=!z � 0:01, and N ’ 8880. We have nu-
merically confirmed that the dynamics in Figs. 2 and 3 are
qualitatively unchanged for a magnetic field of ’ 100 mG.

In conclusion, we have proposed a novel mechanism of
spontaneous formation of a topological spin structure in
the spin-1 BEC prepared in the m � 0 state. The m � �1
06530
components increase exponentially from initial random
seeds due to dynamical instabilities and form singly quan-
tized vortex states (Fig. 2). Even if the clockwise and
counterclockwise rotation components are assumed to be
equal in an initial seed, one of them eventually becomes
dominant (Fig. 3). This chiral symmetry breaking is attrib-
uted to the fact that the topological spin structure is ener-
getically the most favorable due to the ferromagnetic
interaction. This spontaneous spin structure formation is
essentially caused by the spin-exchange dynamics under
the constraint of spin conservation. We expect that many
more interesting spin textures may also be spontaneously
generated in isolated spinor BECs.
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