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Liquid-State Properties of a One-Component Plasma
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As a consequence of strong collective behavior, the microscopic dynamics of the one-component
plasma (OCP) differs significantly from that of ordinary liquids. We show that, when particle caging
dominates, the OCP transport coefficients nevertheless satisfy universal laws satisfied by dense ordinary
fluids: the Stokes-Einstein relation, the Arrhenius law of viscosity, and several excess-entropy scaling
relations. These results extend to long-range interaction potentials, the unifying description of atomic
transport in condensed matter.
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An important model in the study of strongly coupled
Coulomb systems is the classical one-component plasma
(OCP), which consists of a single species of charged
particles (charge q, mass m) immersed in a uniform, neu-
tralizing background [1]. The OCP plays a conceptual role
similar to that filled by the hard-sphere model in the theory
of simple liquids, and can also be seen as a limiting case of
real matter under extreme conditions (e.g., atomic nuclei in
white dwarfs interiors). The thermodynamic state of the
OCP is characterized by the coupling parameter � �
q2=akBT, where a � �4�n=3��1=3 is the Wigner-Seitz
radius, n is the particle density, and T is the temperature.
As � increases, the OCP shows transitions from a nearly
collisionless, gaseous regime for �� 1 continuously
through an increasingly correlated, liquidlike regime to
the Wigner crystallization into a lattice near �m �
q2=akBTm � 175.

The goal of this study is to clarify how this transition to a
liquid-state regime occurs. We show that, despite the dif-
ferences in the microscopic dynamics of the OCP and
ordinary liquids, the OCP behaves much like a liquid in
the �l � � � �m range, with �l ’ 50. We show that, in
this range, the OCP transport properties obey well-
established laws satisfied by ordinary liquids, such as the
Arrhenius law for the viscosity, the Stokes-Einstein rela-
tion between self-diffusion and shear viscosity, and several
‘‘universal’’ excess-entropy scaling relations. To this end,
we have performed molecular dynamics (MD) simulations
to determine, to unprecedented accuracy and �-range, the
OCP pair-distribution function g�r�, the velocity autocor-
relation function (VAF), the self-diffusion coefficient D,
and shear-viscosity coefficient � by evaluating the appro-
priate Green-Kubo expressions. The present results are
important from both practical and fundamental point of
views. They can indeed be used to construct models of
transport in more complex strongly coupled Coulomb sys-
tems (e.g., dense multicomponent plasmas), and support
the continued search for a unifying description of atomic
transport in condensed matter.

As a consequence of the infinite range of the Coulomb
potential, each particle of the OCP interacts not just with a
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limited number of neighbors, as is the case for a particle
in an ordinary fluid, but with all the other particles.
Any charge fluctuation can give rise to propagating,
high-frequency, collective modes of frequency !p �

�4�nq2=m�1=2 in the infinite wavelength limit. The fluid
OCP therefore exhibits dynamical behavior not encoun-
tered in ordinary monatomic fluids as illustrated in Fig. 1.
The figure shows results of MD simulations for the VAF of
the OCP and of two common kinds of monatomic liquids at
different thermodynamic states, Lennard-Jones liquids [2]
and liquid alkali metals [3]. At low enough coupling, all
VAFs decay monotonically, a behavior implying the ab-
sence of many-body correlation effects. At higher coupling
(large density and/or low temperature), another common
behavior is the appearance of a negative correlation region.
This is the manifestation of the ‘‘cage effect’’: owing to
pronounced structural correlations, each particle finds it-
self trapped for some period of time in the cage formed by
its immediate neighbors, rebounding against it and thereby
slowing down the diffusive motion. For the OCP, negative
correlations appear at � � �l � 50. The cage effect in the
OCP was recently studied and quantified with MD [4]; the
authors estimated the time Td � 0:13 exp��0:35�=!p

needed for a cage to be decorrelated, i.e., for 90% proba-
bility that half of the particles’ original neighbors leave
their surroundings. In liquids, a characteristic frequency
for the oscillatory motion of a caged particle in the poten-
tial well produced by the other particles is the Einstein
frequency �E. For the OCP, �E � !p=

���
3
p

<!p, and one
therefore expects caging to be strongly affected by the
coupling of the single-particle motion to collective density
fluctuations [4]. This is indeed the case as revealed by the
marked oscillatory nature at a frequency ’ 0:9!p of the
OCP VAF for � � 10; such sustained oscillations are not
seen in ordinary fluids. Notice also that the lowest mini-
mum of Z�t� is attained by its first minimum in ordinary
liquids but by its second minimum in the OCP. For strongly
coupled liquids, the VAF frequency spectra reveal a broad
low-frequency peak, which is attributed to coupling to
acoustic shear modes [5,6]. For the OCP this peak arises
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FIG. 1 (color). Normalized VAF at dif-
ferent thermodynamic states of the OCP
(left panel), Lennard-Jones liquids (from
[2]), and metal liquids [3]. �, �, and � �
�m�2=��1=2 are, respectively, the depth
and first zero of the pair potentials and
the time unit.
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when � � 100 in addition to the marked high-frequency
peak at ’ 0:9!p.

Our MD simulations are based on the particle-particle-
particle-mesh algorithm with periodic boundary conditions
and were performed in the canonical ensemble using a
Nosé-Hoover thermostat. The time step is �t � 0:01=!p,
which ensures good energy conservation (�E=E� 10�6).
The present results were obtained with N � 1024 particles
using the following procedure. After a long equilibration of
105 time steps, a run of length t � 30	 1310:72!�1

p was
performed; each run was then divided into 30 statistically
independent ensembles of length t � 1310:72!�1

p , i.e.,
much larger than typical correlation times. Our simulations
cover the 0:2 � � � 250 range; when �> �m the system
is in a supercooled liquid state. Interesting aspects of MD
simulations that we had to face at high � are worth men-
tioning here. Despite careful equilibration phases and long
simulation times, we found that results for the diffusion
coefficient depend upon the initial particle configuration
when �> 150. The system remains in the initial meta-
stable state with respect to the equilibrium thermodynamic
state over times much longer than the simulation time. As a
consequence, averages over phase space are not the same
as time averages; the ergodicity is broken. For instance,
with a crystal lattice (bcc or fcc) in the fluid phase �< �m,
the system fails to melt over the simulation time (it is a
superheated solid) unless �< 150 when the lattice is very
unstable and melts during the equilibration phase. Corre-
spondingly, as expected for a perfect lattice, the self-
diffusion obtained is nearly zero. Similarly, when starting
with a random particle configuration at �> �m, the system
stays in a metastable supercooled liquid state over the time
06500
scale of the simulation, unless ��>250� is large enough for
crystal nucleation to occur, resulting in the drop of the
diffusion coefficient. (We are presently investigating the
OCP nucleation dynamics and reserve the results for future
publication.) The results in Fig. 2 for �> �m are repre-
sentative of the supercooled liquid OCP.

Figure 2 shows the MD results for the reduced self-
diffusion D
 � D=a2!p and viscosity �
 � �=mna2!p.
Both D
 and �
 were fitted to a rational function f��� �P3
i�1 ai�

i=
P3
i�1 bi�

i with the parameters ai and bi given
in Table I. Results for �
 do not agree well with previous
calculations (see [7] for a review), which we believe to be
due to the combination of finite-size effects and poor
statistics. The latter indeed use fewer particles, fewer
statistically independent ensembles, and fewer time steps.
The viscosity curve presents a behavior typical of ordinary
fluids. In a fluid, transport of momentum occurs not only by
the bodily movement of particles, but also by the action of
interparticle forces at a distance. At small coupling, the
former mechanism is predominant and, as in a gas, the
OCP viscosity increases with temperature. At intermediate
coupling, 10 � � � 50, the two mechanisms contribute
with similar magnitude, resulting in a shallow minimum
near � ’ 25. When � � 50 the viscosity decreases with
increasing temperature (or lowering density), in an
Arrhenius-type relation �
 � AeB�, with A ’ 0:10 and
B ’ 0:008. This behavior, which occurs when caging
dominates, can be understood within Eyring’s theory of
atomic transport in liquids [8]. In this approach, based on
the absolute reaction rates theory, a cage is represented by
an energy barrier �G. The frequency at which a caged
particle can overcome and pass the potential barrier is
FIG. 2 (color). OCP reduced self-
diffusion D
 (log-log) and shear-
viscosity �
 (log-linear) and fitting for-
mulas (solid line). The dashed line is the
fitting formula of Hansen et al. [18]. The
dotted line is the Arrhenius relation
�
 � 0:10 exp�0:008��.
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FIG. 3. (Top panel) Variation with � of the product
D��a=kBT. (Bottom panel) Logarithm of D�r� and D�d� vs
minus the excess entropy s. The lines are least squares fits.

TABLE I. Fitting parameters. For D
 the � range is split into two parts, (a) � � 2 and (b) � � 2.

a0 a1 a2 a3 b0 b1 b2 b3

D
 (a) �0:73 3.90 0.49 �0:27 0.042 �0:502 1.34 0.74
D
 (b) 59.74 3.11 0.001 37 �2:4	 10�5 �32:1 56.25 1.24 0.037
�
 1.60 0.24 6	 104 �1:8	 10�6 �1:216 2.58 �0:014 2:255	 10�5
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given by the rate equation � � �kBT exp���G=kBT�=h,
where h is the Planck constant and � is the probability
that the particle jumps to the neighboring cavity when
it reaches the activated state. The Eyring model leads
to the Arrhenius behavior � ’ �nkBT=� � �hn	
exp��G=kBT�=�, where � is a geometrical factor.
Comparison with our fit allows one to estimate the activa-
tion energy; one obtains �G ’ 1:4kBTm, in good agree-
ment with activation energies measured in liquid metals
[9]. Using our MD results for g�r� � exp��w�r�=kBT
,
one can estimate the cage radius, i.e., the average distance
d
 separating the center of a cage to the position of the
activated state by solving �G � w�d
�, which yields
d
��� � 1:4a� 2%. Since � is not known a priori, one
cannot infer an absolute value for the frequency � of jumps
between cages. The ratio ����=���m�, however, is acces-
sible, and allows one to compare the time scale of the
dynamics of caging in a liquid at � with the liquid OCP
at �m; for instance, ��50� ’ 10���m�, i.e., at � � 50 jumps
between cavities occur 10 times more often than at � �
�m. Moreover, this ratio is directly comparable with the
ratio Td��m�=Td��� [4] of the time needed for a cage to be
decorrelated (see above). We find a striking agreement
(within 5%) between the two ratios. This is a strong
evidence of the relevance of Eyring’s model, and thereby
that caging is the mechanism of transport at � � �l.

It is well known that the Stokes-Einstein relation pro-
vides an intimate connection between the self-diffusion
and shear-viscosity coefficients of dense fluids,

D�
R
kBT

’
2

q�
; (1)

where R is an effective molecular radius and q a numerical
constant. This relation was first derived from a purely
hydrodynamic description, using Stokes’s law for the vis-
cous drag on a moving sphere of radius R in a fluid with
shear viscosity �. The resulting constant q depends on the
choice of boundary conditions at the surface of the sphere,
q � 6 with sticking boundary conditions and q � 4 with
slipping boundary conditions. Surprisingly enough, Eq. (1)
is found to work fairly well even for one-component dense
fluids, where any distinction between the diffusing particle
and those of the surrounding fluid disappears. Several
microscopic theoretical models were able to give a sounder
justification of Eq. (1) in simple liquids [10,11]. In par-
ticular, Gaskell and Miller [11] derived a model for the
VAF Z�t� ’ � 1

2��
2
R
dqf�q��CL�q; t� � 2CT�q; t�
 in terms
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of the Fourier transform f�q� of a step-function ‘‘form
factor’’ f�r� � 	�a� r�, and of CL and CT , the longitudi-
nal- and transverse-current correlation functions, respec-
tively. This model provides a justification of the VAF
frequency spectra of both dense ordinary liquids [5] and
strongly coupled OCP [6]: CT reproduces the broad low-
frequency peak while, for the OCP, CL reproduces the
high-frequency peak. The model also results in a general-
ized Stokes-Einstein relation,

D �
kBT
m

Z 1
0
Z�t�dt ’

nkBT

3�2

Z 1
0
dq

f�q�
��q�

; (2)

which reduces to Eq. (1) when simple models for the
q-dependent shear viscosity ��q� � �nkBT=q2�	
�
R
1
0 CT�q; t�dt�

�1 are used [12]. Equation (2) is obtained
using the identity

R
1
0 CL�q; t�dt � 0. This model therefore

suggests that, although CL contributes significantly to the
time dependence of Z�t� in the OCP, the OCP diffusion
3-3



PRL 96, 065003 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
17 FEBRUARY 2006
coefficient should be controlled at high � by CT , and
therefore should satisfy a Stokes-Einstein relation.
Figure 3 shows that, indeed,

D��a=kBT ’ 0:341� 1%; � � 50: (3)

In liquids experimental evidence tends to support the slip-
ping boundary conditions q � 4 [10]. For the OCP, com-
bining Eqs. (1) and (3) with q � 4 results in an effective
radius R ’ 1:46a, which compares well with the cage
radius d
; it nearly corresponds to the radius when g�r�
becomes larger than 1. As discussed in [7], Eq. (3) could be
used to estimate the diffusion of impurities in compact
astrophysical objects.

In an effort to provide a unifying quantitative descrip-
tion of atomic transport in condensed matter, it was shown
that transport coefficients of liquids with quite disparate
pair interactions satisfy universal relationships with equi-
librium thermodynamic properties. Rosenfeld [13] first
established a quasiuniversal behavior of the reduced
diffusion D�r� � Dn1=3=�kBT=m�

1=2 and viscosity ��r� �
�=�n2=3�mkBT�1=2� as a function of the reduced excess
entropy s � Sex=NkB of the form D�r� ’ 0:6e�0:8s and
��r� ’ 0:2e0:8s, for all dense ordinary fluids, s � �1 (freez-
ing corresponds to about �5 � s � �4). Different poten-
tials can be fitted better by somewhat different exponential
arguments and prefactors; nevertheless, with the aforemen-
tioned relation, the diffusion coefficients of strongly
coupled fluids are estimated within about 30%. For the
OCP, we estimated s using the accurate equation of state of
DeWitt and Slattery [14]. Figure 3 shows the plot ofD�r� vs
�s for the OCP. The least squares fits over the �4:4 �
s � �1 range (i.e., 50 � � � 200) yields D�r� ’

 exp���s� with 
 � 0:98� 0:02 and � � 0:82� 0:01,
in accordance with the above cited results. The identity
D�r���r� � �4=3�2�1=3D��a=kBT together with Eq. (3)
yields ��r� ’ 0:18 exp��s� for s � �2:26, i.e., � � 50,
also in agreement with Rosenberg’s result. Recently, by
recognizing that momentum and energy transfers at high
densities are facilitated by the strong repulsion prevail-
ing at small separations and that the rate of cage diffu-
sion is proportional to the number of accessible con-
figurations, Dzugutov [15] inferred that the reduced dif-
fusion D�d� � D=��E�2� should be proportional to es.
Here � is the position of the first peak in g�r� and �E �

4�2g����
�������������������
�kBT=m

p
is the Enskog collision frequency. In

[15] Dzugutov approximated s by the two-body approxi-
mation s2 � �2�n

R
1
0 �g�r� log�g�r��� �g�r� � 1�
r2dr,

and obtained the scaling law D�d� � 0:049es2 for several
model liquids. Then Hoyt et al. [16] showed that it is
essential to use the actual s rather than the simple two-
body approximation s2, and obtained D�d� / e
s with 
 �
06500
1:06� 0:07. Figure 3 shows LogD�d� vs �s for the OCP;
the least squares fit yields a slope of �1:121 with an
uncertainty of �0:018, in agreement with Hoyt’s result.
These results extend to long-range interactions, the unify-
ing description of transport in condensed matter.

In summary, the OCP transport properties behave like
dense ordinary liquids for � > 50 when caging is impor-
tant. At smaller coupling, �< 50, even when the OCP
exhibits the short-range order typical of liquids [oscilla-
tions in g�r� arise when �> 3], the transport properties are
driven by a complicated combination of kinetic and poten-
tial effects, which remain to be clarified. These results will
be used to develop models of transport in more complex
strongly coupled Coulomb systems, as is done with multi-
component liquids [16,17].
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