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Electric Field in a Double Layer and the Imparted Momentum
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It is shown that the net momentum delivered by the large electric field inside a one-dimensional double
layer is zero. This is demonstrated through an analysis of the momentum balance in the double layer at the
boundary between the ionosphere and the aurora cavity. For the recently observed double layer in a
current-free plasma expanding along a divergent magnetic field, an analysis of the evolution of the radially
averaged variables shows that the increase of plasma thrust results from the magnetic-field pressure
balancing the plasma pressure in the direction of acceleration, rather than from electrostatic pressure.
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The strong electric fields confined to narrow isolated
regions in plasmas, called double layers (DL) [1], have
been suggested to accelerate particles in the aurora [2],
cosmic rays [3], laser-ablated plasmas [4], laboratory ex-
periments [5], and recently in gas discharges [6—9]. In this
Letter we show that the net force and momentum imparted
by these strong electric fields in a one-dimensional (1D)
DL are identically zero. We demonstrate this often-
overlooked vanishing of force and momentum by analyz-
ing the DL located at the boundary between the ionosphere
and the aurora cavity [10]. For the DL recently observed in
the common configuration of an axially current-free
plasma expanding along a divergent magnetic field [6—
8], we show that the increase of plasma thrust results
from the magnetic field pressure that balances the plasma
pressure in the direction of acceleration, rather than from
electrostatic pressure. This unfolding of the mechanism of
DL acceleration is important for the development of accel-
erators and thrusters and for understanding many phe-
nomena in space [l11]. In general, an insight into
momentum balance is important since evidence of a DL
existence in distant astrophysical objects must rely on its
global aspects [1,12].

The contribution of the electric field to the momentum is
deduced from application of the divergence theorem to the
momentum equations. If the electomagnetic pressure ten-
sor elements are zero at the domain boundaries, the elec-
tromagnetic fields do not affect the total mechanical
momentum. In a 1D DL this statement is exhibited very
clearly. Multiplying the two sides of the equation that
expresses Gauss law by the electric field, we obtain 606 :
EE = pE, where E is the electric field, p the net charge
density, and €, the permittivity of free space. If all varia-
bles depend on z only, the integral form of this equation
becomes

%[E(ZQ)2 — E(z))*] = sz pEdz. (1)

<1

The total electric force equals the difference between the
electrostatic pressures on the two boundaries of the domain
(z; and z,). In a DL the electric field is zero at the two
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boundaries. Thus, the total force exerted and the momen-
tum delivered by the electric field of a 1D DL are zero.

As a concrete example we construct a collisionless-
plasma DL configuration in which, for simplicity, the
trapped (reflected) particle populations have water-bag
distributions [13], while the free particle populations are
two cold counter-propagating ion and electron beams. We
assume the electric potential ¢(z) at the two sides of the
DL to be ¢p(z = —o0) = 0 and ¢(z = ®©) = — ¢ (P >
0). Poisson’s equation is written as
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where the first two terms on the right-hand side (RHS) of
the equation represent the densities of the ion and electron
beams, while the third and fourth terms represent the
densities of the trapped ion and electron populations. The
maximal densities of the four particle groups are ny; (free
ions), ng (free electrons), n; (trapped ions), and n
(trapped electrons). The kinetic energies of the beam par-
ticles moving towards the DL are & (ions) and &g, (elec-
trons) and the maximal energies of the trapped ions and
electrons are &; and g, (both are smaller than e ¢, ¢ being
the elementary charge). Upon integrating Eq. (2) from z =
—oo we obtain an equation [which is Eq. (1) for this case]
that expresses the momentum balance:
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The first two terms on the RHS of the equation are the

© 2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.96.065002

PRL 96, 065002 (2006)

PHYSICAL REVIEW LETTERS

week ending
17 FEBRUARY 2006

momenta changes (with respect to the high potential side
at z = —o0) of the ion and of the electron beams. The third
term and the fourth term are the pressure changes of the
trapped ions and electrons, respectively. The third term on
the RHS of both last equations is zero when ¢ = g;/e —
b, while the fourth term is zero when ¢ = —g./e.

The various net contributions to the momentum are
obtained by Eq. (3) at z = oo, where the electric field
is zero. The change in the total momenta of the beams
equals the change in total pressure of the trapped par-
ticles. Although the electrostatic pressure does deliver
momentum locally inside the DL, the total momen-
tum it imparts across the DL is zero. Examples of the
profiles of variables for a symmetrical DL (the electric-
field intensity depends on the distance from the plane
of symmetry at the center of the DL) and an asymmetri-
cal DL are shown in Fig. 1. Charge neutrality, zero elec-
tric field, and appropriate Bohm conditions are imposed
at the two boundaries for obtaining the DL solutions. For
the asymmetrical DL the parameters were chosen to be
similar to those at the DL between the ionosphere and the
aurora cavity. Such is the ratio of 10 between the plasma
densities on the two sides of the DL [10]. The various
contributions to the momentum balance, shown in
Figs. 1(d) and 1(h), exhibit the local nonzero contribution
of the electrostatic pressure and the global vanishing of that
contribution. It is interesting to note that despite the fact
that the density of the precipitating electrons, presented
here as the cold beam, is low, their change of momentum is
large. In fact, as is shown in Figs. 1(d) and 1(h), it is that
momentum change of the precipitating electrons that bal-
ances the opposite momentum change of the high-density
ion beam.

When electromagnetic energy is converted into particle
energy in the DL, a source of energy, a battery, has to exist
outside the DL. On the other hand, if the particle motion is
reversed, so that particle energy becomes electromagnetic
energy, the DL itself acts as a battery. Thus, the electric
field in the DL does exchange energy with, but does not
impart momentum to the particles.

The above demonstrated vanishing of the force on the
plasma in a 1D DL does not necessarily occur in DLs in a
plasma flow of a varying cross section for which Eq. (1) is
not valid. For the analysis we employ a standard quasi-1D
model of the flow along streamlines, in which all radially
averaged variables vary along z only, as does the cross
section of the flow A(z) [14]. The governing equations are
(1/A)d(mn;v*A)/dz = —en;d¢p/dz — F  and 0=
en,d¢/dz — d(n,T)/dz, where n; and n, are the ion and
electron densities, v, m, and F the ion velocity, mass and
drag force. The electron temperature is 7, while the ions
are assumed cold. In the isothermal case we treat here the
electron density and the electric potential obey the familiar
Boltzmann relation. Summing the governing equations and
employing Poisson’s equation, we obtain the general mo-
mentum balance equation:
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FIG. 1. Left: a symmetrical double layer (dimensionless quan-

tities) —the electric field (solid line) is d(¢/d)/ds, the poten-
tial (dashed line) ¢/, densities normalized to ng+/eq/e o,
pressures to ngy/edoeg. and s = z/[(ep/ng) 23" /(es) /).
Right: an asymmetrical double layer (similar to that at the
ionosphere—aurora cavity DL). (a),(e) The potential and the
electric field, (b),(f) the densities of the four populations,
(c),(g) the total ion and electron densities and the difference
between them, (d),(h) the pressure terms on the RHS of Eq. (3)
for the four populations and the electrostatic pressure. Ion
variables are shown as dashed lines, electron as dash-dotted
lines; the difference between ion and electron densities in
(c),(g) and the electrostatic pressure in (d),(h), as solid lines.
The pressure of the trapped particles in the symmetrical case is
too small to be shown.
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The electric field is zero on both sides of the DL in the z
direction along the flow and therefore has no net contribu-
tion to the momentum through the 1D momentum balance,
expressed by the left-hand side of the equation. The elec-
tric field however, does impart a net momentum according
to the RHS of the equation (due to a contribution to the
electric field from charges that are outside the flow). That
RHS of the equation expresses the z component of the flux
of the total pressure tensor across the radial boundaries, a
component that is not zero when the cross section varies.
Both the mechanical pressure flux and the electrostatic
pressure flux through the radial boundaries do impart net
momentum. However, that momentum delivered by the
electrostatic pressure is small, even locally, when accel-
eration occurs in the quasineutral regime. Assuming qua-
sineutrality, n = n; = n,, we write the equation for the
Mach number M = v/c, where ¢ = +/T/m is the isother-
mal sound speed, in a form that exhibits the sonic critical
point:
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We used the continuity equation, d(nvA)/dz = vnA, v
being the ionization frequency. The acceleration to super-
sonic velocities requires that the RHS of the equation
change sign at the sonic plane [15]. We note in passing
that Eq. (5) also describes the acceleration of the solar wind
to supersonic velocities [16], in which the drag force is sun
gravity, F = GMgmn/z*> (G is the gravitation constant,
M g the mass of the sun, and z the distance from the center
of the sun), A/z* is constant and » = 0. The isothermal
acceleration is described by one of the solutions for M
of the following (Bernoulli) equation: M? — InM? =
4(Inz/z, + z,/z) — 3, the characteristic length is on the
order of z, = GMg/2c?, at which the sonic transition
occurs. For 7= 500 eV z, equals twice the sun radius,
so that the acceleration is not localized but rather occurs
across a large part of the corona.

It has been proposed that plasma acceleration should
occur when the increasing cross section of the flow results
from a strong divergent magnetic field, so that B(z)A(z) =
const, B(z) being the intensity of the magnetic field [17].
The external force that balances the plasma pressure at the
radial boundaries is the magnetic-field force, and its z
component, expressed by the RHS of Eq. (4), increases
the plasma thrust Th = mnv?A + nTA along the flow.
This axial magnetic-field force equals the product of an
azimuthal plasma current and the radial component of the
varying magnetic field, as could be exhibited by a 2D
model that describes both radial and axial variations,
such as that in Ref. [18]. Localized acceleration to super-
sonic velocities can occur when v = F =0 if the
magnetic-field lines first converge and then diverge along
the flow as in the Laval nozzle. With a nozzle configura-
tion, such as A = A{l + In[1 + (z/L)?]}, the relations
between the flow variables, A = (A,/M)exp[(M? —
/2], n=n,expl(l — M?)/2], and by = e($ — ¢,)/
T = (1 — M?)/2, describe localized acceleration to super-
sonic velocities (the subscript s denotes values at the sonic
plane, here at the neck of the nozzle). The potential is
found from the Boltzmann relation. The DL according to
these relations, exhibited in Fig. 2, is similar to that de-
scribed in Ref. [7]. Note that in the subsonic regime the
plasma accelerates along the converging magnetic-field
lines, in contrast to the expected deceleration due to the
magnetic-mirror effect.

In a diverging-only cross section, acceleration to super-
sonic velocities can occur when v # 0, where the ioniza-
tion provides the drag force [15,17]. The first term on the
RHS of Eq. (5) is positive along the acceleration, and the
ionization, the second term, is large enough in the subsonic
regime to make the RHS of the equation negative. We
identify the source of a localized DL acceleration, ob-
served for this configuration experimentally [6,8] and in
simulations [19], as the simultaneous and abrupt cross-
section expansion and ionization variation, such as in

(&3}

FIG. 2. The DL in a plasma flow along a converging-diverging
magnetic field (similar to [7]). Shown are the profiles of the
normalized (as defined in the text) cross section A/A;, Mach
number M, potential ¢y, and electrostatic pressure P y.

the forms: (A/A,)/+/T1 + 2In(A/A,) = 1 + In[1 + (z/L)?*]
and v = (¢/2)/[1 + In(A/A,)]d\/1 + 2In(A/A,)/dz. With

these specified A and v, we are able to express the flow
variables as:

M? — 1 n,A 2
A=A, e N
Ae"p< 2 ) TTTA e
1 — M? 2 (6)
= +1 ,
Pn 2 M+ 1
|1+ (2)] = el = D/2]
L M '

The dependence of M on z in the last expression holds also
for the flow shown in Fig. 2.

Figure 3(a) shows the profiles of A/A,, M, ¢, and
vy = 10vL/c. Figure 3(b) shows the momentum balance
along the acceleration region, the contributions of the axial
pressure P, and of the pressure at the radial boundaries P,
and their sum P,, which is the accumulating momentum
gain, all normalized to the electron pressure upstream,
noTAp:

EnOTAO—nTAzl_ 1
noTAg M2+ 1

Py

A nTdA
P, = JanTad’ VM2 +1 -1, (7)

noTAO
p = mlvA  M?
TnTA 1

These expressions and Fig. 3 show that the main contribu-
tion to the momentum gain is P,,, the plasma pressure at
the radial boundaries of the diverging flow (where it is
balanced by the external force, the magnetic-field force).
Also shown in Figs. 2 and 3(b) is the normalized electro-
static pressure Py y = (1/2)[d¢py/d(z/L)]* = [(&y/2) X
(dp/dz)*/ngTIL?/ A3, where A% = €,T/(e*ny). Since
L?/A% > 1 (several hundreds in [6]), the contribution of
the electrostatic pressure to the momentum is indeed
negligible.
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FIG. 3. (a),(b) The DL in a plasma flow along a divergent
magnetic field (similar to [6,8]). Shown are (a) the normalized
cross section A/A,, Mach number M, ionization frequency vy,
and potential ¢y, and (b) the normalized axial plasma pressure
P, pressure at the radial boundaries P, their sum P,, and the
electrostatic pressure Pg . (c),(d) Plasma is accelerated in both
directions along field lines and there is no potential difference
between the two opposite plasma edges. Shown are (c) the
normalized cross section A/A;, ionization frequency v,, and
potential ¢,,, and (d) the Mach number M, and the normalized
plasma flux I'y and thrust Thy.

The last configuration [Figs. 3(c) and 3(d)] corresponds
to a possible (although not optimized) laboratory thruster,
as well as to possible acceleration of plasma in space.
There is no potential difference between the two opposite
plasma edges (no need for a “battery”’), the only energy
deposited in the plasma is that for ionization and for
providing thermal energy. The plasma is generated near
the maximum of the magnetic-field intensity (a mini-
mum of the flow cross section) and is accelerated in both
directions along field lines. Figure 3(c) shows the spatial
profiles of the normalized flow cross section A/A,, ion-
ization collision frequency v, = vL/c, and electric poten-
tial ¢, = e(¢p — p;)/T (the subscript 1 denotes values
at z = —o0). The force exerted on the plasma by the
asymmetrical magnetic field imparts a larger momentum
to the right than to the left. As a result, as is shown in
Fig. 3(d), although the flow velocity to the left is larger
than to the right, the particle flux I'y = nAM/n;A, and
the thrust Thy = nA(M? + 1)/n;A, are larger to the
right, exhibiting an electrodeless accelerator without end
walls. The relations between the flow variables in
Figs. 3(c) and 3(d) are: v = (3.0815¢/#L)/[1 + (z/L)?],
(3.0815/m)[arctan(z/L) + 7/2] = 2(M + 2) — 4In[(M +
4)/2],  AJA, =[(M + 4)/2]7 exp(1.5M? — 4M — 14),
and n/n; = (M + 4)A,/2A.

Abrupt divergence of the magnetic field and localized
ionization could result in fast particle beams in space,
accelerated by the mechanism described in Fig. 3. Since

the scale length of the acceleration is determined by vari-
ations in the magnetic-field topology and by the ioniza-
tion mean-free-path, solar wind acceleration, for example,
could occur, according to a recent intriguing suggestion, in
the sun’s chromosphere [11], rather than in the corona [16].

In this Letter we have unfolded the sources of the
momentum gain in DLs. In a current-carrying 1D DL, in
which electromagnetic energy is converted into particle
energy, the thrust of the plasma is the same on both sides
of the DL, while in a current-free DL along a divergent
magnetic field, in which no electromagnetic energy is
deposited, the magnetic-field force increases the plasma
thrust along the flow. In both DLs the contribution of the
electric-field pressure to the momentum is negligible. The
quasi-1D model allowed us an analytical description of DL
structures in a plasma expanding in a diverging magnetic
field. A 2D model should reveal the detailed radial and
axial structure of the flow.
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