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Can Two-Photon Correlation of Chaotic Light Be Considered
as Correlation of Intensity Fluctuations?
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Two-photon correlation phenomena, including the historical experiment of Hanbury Brown and Twiss,
may have to be described quantum mechanically, regardless of whether the source of radiation is classical
or quantum. Supporting this point, we present a ghost imaging type of second-order spatial correlation
experiment of chaotic light to show that the classical understanding based on the concept of statistical
intensity fluctuations does not give a correct interpretation for the observation. From a practical point of
view, this experiment demonstrates the possibility of having high contrast lensless two-photon imaging
with chaotic light, suggesting imaging applications for radiations for which no effective lens is available.
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FIG. 1 (color online). (a) Hanbury-Brown–Twiss configura-
tion. (b) Ghost imaging configuration.
Unlike first-order correlation, which is considered as a
coherent effect of the electromagnetic field, the second-
order correlation of radiation is usually considered as the
classical statistical correlation of intensity fluctuations.
The first second-order correlation experiment was demon-
strated in 1956 by Hanbury Brown and Twiss (HBT) with
two different types of correlation: temporal and spatial [1].
The HBT experiment created quite a surprise in the physics
community with an enduring debate about the classical or
quantum nature of the phenomenon. It has been popular to
consider that the HBT experiment measures the classical
statistical correlation of the intensity fluctuations of the
radiation:

h�I1�I2i � h�I1 � �I1��I2 � �I2�i � hI1I2i � �I1
�I2 (1)

where �I1 and �I2 are the mean intensities of the radiation
measured by photodetectors D1 and D2, respectively.

Figure 1(a) is a schematic of the historical HBT experi-
ment which measures the second-order transverse spatial
correlation of radiation of wavelength � coming from a
distant star with an angular size of ��. The second-order
transverse spatial correlation function ��2��x1; x2� is ex-
pected to be

��2��x1;x2�� hI1I2i�I
2
0

�
1�sinc2

�
����x1�x2�

�

��
(2)

where we have simplified the problem to 1D and as-
sumed �I1 � �I2 � I0. The second term in Eq. (2),
I2

0 sinc2�����x1 � x2�=��, is interpreted as the correlation
of intensity fluctuations. This term is useful in astronomy
for angular size measurement of stars. For short wave-
lengths, this function quickly drops from its maximum to
minimum when x1 � x2 goes from zero to a value such that
���x1 � x2�=� � 1. Thus, we effectively have a point-to-
point relationship between the x1 and x2 plane. As a matter
of fact, the planes of x1 and x2 are the far-field Fourier
transform planes of the finite-size distant star. Therefore,
the measured quantity is the correlation between the trans-
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verse k vectors of the radiation. The nonzero correlation
corresponds to equal transverse wave vectors: k1 � k2.
This is consistent with the physics behind the model of
classical correlation. It is natural to imagine that the radia-
tion coming from the same mode of the electromagnetic
field, passing through the same optical path, would have
identical intensity fluctuations, while radiation coming
from different modes, passing through different optical
paths would not share the same intensity fluctuations.

The classical statistical interpretation has been widely
accepted. Moreover, the concept of intensity fluctuation
has been even extended to quantum models to take over the
concept of two-photon coherence. The philosophy of
‘‘photon bunching’’ is essentially a phenomenological ex-
tension to quantum theory of the statistical correlation on
photon number fluctuations.

In the past 20 years, the massive research on quantum
entanglement [2,3] has brought new challenges to the
classical statistical correlation interpretation. For example,
replacing the chaotic light with an EPR-type two-photon
2-1 © 2006 The American Physical Society
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FIG. 2 (color online). Lensless imaging results. Normalized
correlation of the photocurrents vs transverse position of D2.
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entangled state in Fig. 1(a), the second-order transverse
spatial correlation function turns out to be

hI1I2i � I2
0 sinc2

�
����x1 � x2�

�

�
: (3)

Based on the concept of classical statistical correlation of
intensity fluctuation, the mean intensities �I1 and �I2 must be
zero in this case, otherwise Eq. (1) leads to nonphysical
conclusions. The measurements, however, never yield zero
mean values of �I1 and �I2 in any circumstances.

Thus the concept of classical statistical correlation of
intensity fluctuation may not work for entangled two-
photon states. Two-photon correlation experiments with
entangled photons have been explained in terms of the
superposition of indistinguishable alternatives, two-photon
probability amplitudes, that can lead to a joint-detection
event [4]. Such alternatives, however, represent a troubling
concept in classical theories, because they are nonlocal. If
accepted, the nonlocal behavior of the radiation has been
classified as a peculiar property of nonclassical sources.

More interestingly, we ask ourselves: does the statistical
correlation of intensity fluctuation always work for chaotic
light? We wish to report a two-photon imaging experiment
aimed at answering this question [5]. We will conclude that
two-photon correlation phenomena have to be described
quantum mechanically, regardless if the source of radiation
is ‘‘classical’’ or ‘‘quantum.’’ As first-order correlation is
a coherent effect of electric fields, the second-order cor-
relation is a coherent effect of two-photon probability
amplitudes.

Figure 1(b) illustrates the setup of the experiment. Radi-
ation from a chaotic pseudothermal source [6,7] was di-
vided in two optical paths by a nonpolarizing beam splitter.
In arm A an object, a double slit (d � 1:5 mm and a�
0:2 mm) was placed at a distance dA � 139 mm in front of
a bucket detector (D1). In arm B a point detector D2

scanned the transverse plane at a distance dB � dA from
the source. The bucket detector D1 was simulated by using
a short focal length lens (f � 25 mm) to focus the light
onto the active area of the detector while the point detector
D2 was obtained by a pinhole. The output current from the
photodiodes was first amplified and dc blocked by a pas-
sive RC filter and then sent to a correlation circuit with an
rf mixer and a low pass filter.

Figure 2 reports the measured two-photon image of the
double-slit. The result shows a high visibility equal-size
reproduction of the double slit when scanning photodetec-
tor D2 along the x2 axis which is located at distance dB �
dA from the source.

Let us first clarify the main differences of this measure-
ment compared to Hanbury Brown and Twiss types of
experiments [1]. The measurements of HBT are in the
far-field zone, which measure the momentum-momentum
correlation of the field. In the reported experiment, instead,
we worked in the near-field zone (��� 10�=d) and there-
fore we effectively measured the position-position corre-
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lation between the object plane and the image plane. The
observation is a lensless two-photon ‘‘ghost’’ image.

To confirm that the observed results correspond to an
image but not a projection shadow, we further constructed
a secondary imaging system by using a f � 85 mm lens to
image the ghost image onto a secondary image plane. The
imaging lens was located in the transmitted arm B of
Fig. 1(b) at a distance of dB � 253 mm from the source.
A magnified secondary image was observed at d0B �
330 mm from the lens by scanning D2 on the transverse
plane. Figure 3 reports the measured magnified secondary
image of the ghost image with the expected magnifica-
tion M � d0B=�dB � dA� � 2:9. For this examination we
used two masks with more complicated structures: one,
Fig. 3(a), with the starting letter of our cities (2:3	
2:5 mm) and the other, Fig. 3(b), with the acronym of
our institution (6	 1:9 mm). Figure 3(c) shows the image
obtained with the actual revealed correlation measure-
ments to show the high contrast of the image, while
Fig. 3(d) shows a ‘‘slice’’ of the image around the half
maximum of the correlation.

The explanation in terms of statistical correlation of
intensity fluctuations would not give an acceptable inter-
pretation for this experiment. (a) Unlike the HBT experi-
ment, the measurements are in the near-field zone, so the
measured correlation can no longer be considered as the
correlation of equal k vectors. As a consequence, the
classical argument of trivial projection type ‘‘imaging’’
[8], according to which there is no correlation when the
k vectors are blocked by the aperture, while the correlation
is maximum when the k vectors are allowed to pass, does
not work anymore. In our configuration, any point on the
object plane is ‘‘hit’’ by many different k vectors; thus the
projection-type image would be definitely blurred. (b) One
might think that the two beams reaching the photodetectors
are spatially correlated because they come from the split-
ting of the same source. However, in the two arms the split
radiations are not experiencing the same spatial modula-
tions because the object aperture is placed in only one arm.
And it is exactly the spatial modulation introduced by the
aperture that we retrieve in the measurement. This is the
physics behind the term ghost image: although it is formed
2-2
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FIG. 3 (color online). Secondary imaging results. (a) and
(b) are the two object used; (c) and (d) are the obtained images.
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by the transmitted radiation, it reconstructs the spatial
modulation experienced by the reflected radiation only.
(c) The use of the bucket detector of D1 further ensures
the washing out of any classical spatial correlation. The
bucket detector involves using a lens to focus all the light
transmitted through the aperture onto the active area of the
detector at once. Hence even if there exists a spot-by-spot
classical correlation, such a correlation cannot be retrieved
because in one arm all the ‘‘spots’’ are detected together.

On the other hand, the quantum model for this experi-
ment is straightforward. In quantum theory of photodetec-
tion [9], the second-order correlation function is calculated
as:

G�2��t1; ~r1; t2; ~r2� � Tr��E���1 �t1; ~r1�E
���
2 �t2; ~r2�

	 E���2 �t2; ~r2�E
���
1 �t1; ~r1��: (4)

where E��� and E��� are the negative-frequency and the
positive-frequency field operators at space-time points
� ~r1; t1� and �~r2; t2� and � represents the density operator
describing the radiation.

Let us calculate the second-order correlation for a sim-
ple quantum mechanical model of chaotic light:

�̂ chaotic /
X
~q

X
~q0
j1 ~q1 ~q0 ih1 ~q1 ~q0 j: (5)

Basically we are modeling the light source as an incoherent
statistical mixture of two photons with equal probability of
having any transverse momentum ~q and ~q0.

The transverse spatial part of the second-order correla-
tion function can be rewritten as:

G�2�� ~x1; ~x2� �
X
~q; ~q0
h1 ~q1 ~q0 jE

���
1 � ~x1�E

���
2 � ~x2�E

���
2 � ~x2�

	 E���1 � ~x1�j1 ~q1 ~q0 i

�
X
~q; ~q0
jh0jE���2 � ~x2�E

���
1 � ~x1�j1 ~q1 ~q0 ij

2 (6)
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where ~xj is the transverse coordinate of the jth detector.
The transverse part of the electric field operator can be
written as follows:

~E ���j � ~xj� /
X
~q

gj� ~xj; ~q�â� ~q� (7)

where â� ~q� is the annihilation operator for the mode cor-
responding to ~q and gj� ~xj; ~q� is the Green’s function asso-
ciated to the propagation of the field from the source to the
jth detector [10].

Substituting the field operators into Eq. (6) we obtain:

G�2�� ~x1; ~x2� �
X
~q; ~q0
jg2� ~x2; ~q�g1� ~x1; ~q

0�

� g2� ~x2; ~q0�g1� ~x1; ~q�j2: (8)

This expression represents a key result toward understand-
ing the phenomenon. In fact, it expresses the interference
between two alternatives, different yet equivalent, which
lead to a joint photodetection: (1) ~q and ~q0 are annihilated
at ~x2 and ~x1, respectively, and (2) ~q0 and ~q are annihilated at
~x2 and ~x1, respectively. The interference phenomenon is
not, as in classical optics, due to the superposition of
electromagnetic fields at a local point of space-time. It
is due to the superposition of g2� ~x2; ~q�g1� ~x1; ~q0� and
g2� ~x2; ~q0�g1� ~x1; ~q�, the so-called two-photon amplitudes,
nonclassical entities that involve both arms of the optical
setup.

Equation (8), can be further simplified in the form of

G�2�� ~x1; ~x2� /
X
~q

jg1� ~x1; ~q�j
2
X
~q0
jg2� ~x2; ~q

0�j2

� j
X
~q

g
1� ~x1; ~q�g2� ~x2; ~q�j
2

� G�1�11 � ~x1�G
�1�
22 � ~x2� � jG

�1�
12 � ~x1; ~x2�j

2: (9)

The second expression of Eq. (9) highlights the link with
the standard form of second-order correlation function of
chaotic light in terms of the first-order correlation func-
tions G�1�ij .

Although the model is at two-photon level, it is explica-
tive of the physics of the phenomenon also at higher light
intensities. In fact, the result in Eq. (9) is the same result
obtained in Ref. [7] where we used the standard model of
chaotic sources with many photons.

The first term in Eq. (9) is the product of the average
intensities measured by the two detectors (blocked in the
detection circuit). The second term, which corresponds to
the ‘‘intensity fluctuation’’ in Eq. (1), is nothing but the
two-photon interference term. Although this term can be
expressed with first-order correlation functions, G�1�12 and
G�1�21 in Eq. (9) do not correspond to the superposition of
two electromagnetic fields at one local space-time point.
On the contrary, they are measured by two independent
photodetectors. The second-order interference, or super-
position, happens between different yet equivalent two-
2-3



PRL 96, 063602 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
17 FEBRUARY 2006
photon amplitudes which lead to a joint-detection event of
two photodetectors at distant space-time points �r1; t1� and
�r2; t2�. There is no counterpart for such a concept in
classical electromagnetic theory.

Equation (9) also indicates another difficulty for classi-
cal interpretation. The radiation is completely chaotic,
spatially incoherent, yet the second term in Eq. (9), the
one retrieved in the measurement for two-photon imaging,
represents a coherent superposition. This is quite a sur-
prise by any classical means. In quantum theory, we have
shown that this is simply a two-photon interference phe-
nomenon. The superposition takes place between quanti-
ties g2� ~x2; ~q�g1� ~x1; ~q0� and g2� ~x2; ~q0�g1� ~x1; ~q� in Eq. (8),
namely, the two-photon amplitudes. The two-photon am-
plitudes can be considered as effective two-photon fields;
and, in terms of these nonclassical two-photon fields, in-
deed we have a coherent effect.

Equation (9) is a general expression for chaotic radiation
[11]. Regarding the historical debate about quantum vs
classical interpretation for second-order correlation mea-
surement, we have shown that the second-order correlation
of chaotic light is a two-photon interference phenomenon.
In this respect, the argument that led to Eq. (9) extends
from two-photon imaging to the historical HBT and to all
second-order coherence phenomena.

In the specific case of two-photon ghost imaging, the
experimental results can be accurately calculated from
Eq. (9). In fact, in the experimental setup of Fig. 1(b),
the Green’s functions can be written as:

g1� ~x1; ~q� / �
�
~q;�

c
!
dA

�
T� ~x1�e

i ~q: ~x1

g2� ~x2; ~q� / �
�
~q;�

c
!
dB

�
ei ~q: ~x2

(10)

where T� ~x1� is a function describing the aperture in the
plane of x1; �� ~q; !c p� is proportional to the transfer func-
tion of the linear system and the paraxial approximation
has been used; ! is the light frequency, and c is the speed
of light.

If the distances from the source to the two detectors are
equal (dA � dB), the second term of Eq. (9), after the
integration of the bucket detector, reduces to

G�2�M � ~x2� �
Z
d~x1jT� ~x1��� ~x1 � ~x2�j

2 � jT� ~x2�j
2: (11)

Thus we have successfully explained the experimental
observation in terms of quantum two-photon interference.

From a practical point of view this result may be useful
because the chaotic source produces an equal-size repro-
duction of the object in the plane at equal distance from the
source without the necessity of using a lens and we have
shown that such an image can be obtained with high
contrast. The situation seems quite promising for imaging
06360
applications in which no effective lens is available. In
addition, the existence of the imaging condition dA � dB
would allow the possibility of reconstructing a 3D structure
of an object by scanning D2 on various transverse planes,
layer by layer.

The result of this Letter is generally interesting and
important if read in the context of the historical debate
about quantum vs classical interpretation for second-order
correlation measurements triggered by the observation of
Hanbury Brown and Twiss. We have presented experimen-
tal and theoretical evidence to show that the second-order
correlation measurement of chaotic radiation is, in general,
a quantum phenomenon involving superposition between
indistinguishable two-photon alternatives, rather than a
classical effect due to the statistical correlation between
intensity fluctuations. The two-photon coherent effects are
observed in the intensity fluctuations, however, they are not
caused by the statistical correlation of the intensity
fluctuations.
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