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Duality in Left-Right Symmetric Seesaw Mechanism
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We consider type I� II seesaw mechanism, where the exchanges of both right-handed neutrinos and
isotriplet Higgs bosons contribute to the neutrino mass. Working in the left-right symmetric framework
and assuming the mass matrix of light neutrinosm� and the Dirac-type Yukawa couplings to be known, we
find the triplet Yukawa coupling matrix f, which carries the information about the masses and mixing of
the right-handed neutrinos. We show that in this case there exists a duality: for any solution f, there is a
dual solution f̂ � m�=vL � f, where vL is the vacuum expectation value of the triplet Higgs boson. Thus,
unlike in pure type I (II) seesaw, there is no unique allowed structure for the matrix f. For n lepton
generations the number of solutions is 2n. We develop an exact analytic method of solving the seesaw
nonlinear matrix equation for f.

DOI: 10.1103/PhysRevLett.96.061802 PACS numbers: 14.60.Pq, 11.30.Er, 14.60.St
Introduction.—The discovery of neutrino oscillations in
atmospheric, solar, reactor, and long-baseline neutrino ex-
periments [1] gave unambiguous evidence for neutrino
mass and mixing and spurred the activity in neutrino
mass model building. Among the possible mechanisms of
neutrino mass generation, arguably the simplest and most
attractive one is the seesaw mechanism [2,3], which ex-
plains the smallness of the neutrino masses through the ex-
change of superheavy particles. In addition, it has an ele-
gant built-in mechanism of generation of the baryon asym-
metry of the universe—baryogenesis via leptogenesis [4].

In its simplest version, the seesaw mechanism extends
the standard electroweak model by assuming the existence
of SU�2�L-singlet right-handed (RH) neutrinos NR with a
bare Majorana mass matrix MR. The RH neutrino masses,
not being protected by the electroweak symmetry, are
naturally large—at Planck or grand unification (GUT)
scale. The masses of light neutrinos, produced in this (so-
called type I) seesaw mechanism, are [2]

m� ’ m
I
� � �mDM

�1
R mT

D; (1)

where mD � vy, v ’ 174 GeV being the electroweak vac-
uum expectation value (VEV) and y the Dirac-type
Yukawa matrix describing the coupling of lepton doublets
to NR and the standard Higgs doublet. Alternatively, the
masses of light neutrino can be generated through their
interaction with a heavy SU�2�L-triplet Higgs scalar �L,
which can acquire an induced VEV vL through its coupling
to the Higgs doublet. This (so-called type II) seesaw
mechanism [3] yields

m� � mII
� � vLfL � �v2=M��fL; (2)

where fL is the Yukawa coupling between the lepton
doublets and �L, and M� is the mass of the isotriplet
Higgs scalar.

The RH neutrinos NR, being electroweak singlets, are
actually aliens to the standard electroweak model, though
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can be freely added to it. They are much more natural in
models with left-right (LR) symmetry [5] or in SO�10�
GUT [6], which can be broken down to the standard model
through the LR-symmetric stage. The LR symmetry pro-
vides a very natural explanation of the observed maximal
parity and C violation in low-energy weak interactions and
is therefore likely to be present at some level in the final
theory.

In this class of models, the RH neutrinos are in doublets
lR of SU�2�R, and their mass is generated by the VEV vRof
the SU�2�R-triplet Higgs field �R through the Majorana-
like Yukawa coupling. LR symmetry then implies that
there should also exist an SU�2�L-triplet Higgs field �L,
and the Yukawa couplings of the triplet Higgs scalars to
leptons have the form

fL�lTLCi�2�LlL� � fR�lcTL Ci�2�RlcL� � H:c:; (3)

where lcL � C�lTR, �L;R � ��L;R, and C is the charge con-
jugation matrix. The Dirac-type Yukawa matrix y comes
from the coupling of the lepton doublets lL and lR with the
bidoublet Higgs field �. In this class of models, light
neutrino masses naturally get both type I and type II con-
tributions, with MR � vRfR.

In addition to the gauge LR symmetry, the models of this
kind are usually assumed to possess a discrete LR symme-
try, which is broken at a scale vLR that may or may not
coincide with the SU�2�R breaking scale vR. There are
essentially two ways in which the discrete LR symmetry
can be introduced. In the first one, the left-handed and RH
fermions are interchanged, while the Higgs fields undergo
�L $ ��R, �$ �y. This yields

fL � f�R; y � yy; (4)

where the last equality holds when the VEVs of the bi-
doublet � are both real. The second realization requires the
invariance with respect to lL $ lcL, �L $ �c

L � �R, �$
�c � �T , i.e., is essentially the charge conjugation sym-
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metry. It leads to

fL � fR � f; y � yT: (5)

While both implementations of the discrete LR symmetry
are possible, the second one is more natural in the context
of SO�10� unified theories, where it is an automatic gauge
symmetry [7]. In what follows, we will adhere to this latter
realization, i.e., will be assuming the equalities in Eq. (5) to
hold. The light neutrino mass matrix in this LR-symmetric
seesaw mechanism is then given by

m� ’ mII
� �mI

� � vLf� v2y�vRf��1y: (6)

For the realization (4) of discrete LR symmetry, the type I
term in Eq. (6) would contain �f���1 rather than f�1.

Seesaw and duality.—We will pursue a bottom-up ap-
proach: assuming m� and y to be known, we solve Eq. (6)
for the n	 n matrix f, where n is the number of lepton
generations. Note that the matrices m� and f are in general
complex symmetric, whereas y is symmetric due to the
assumed discrete LR symmetry (5).

An examination of Eq. (6) reveals the existence of its
following duality property: if f is a solution, so is

f̂ �
m�

vL
� f; (7)

provided that the matrix y is invertible. This can be readily
verified by the direct substitution of (7) into Eq. (6). Notice
that exactly the same duality holds in the case of the
realization (4) of the discrete left-right symmetry.

The duality implies that, given m� and y, there is no
unique solution for the triplet Yukawa coupling f. As we
shall see, for n fermion generations there are 2n matrices f
that, for a given y, result in exactly the same mass matrix of
light neutrinosm�. It should be stressed that this duality is a
unique property of the LR-symmetric type I� II seesaw:
no such duality exists in the cases of pure type I or II
seesaw, nor in the case when the two seesaw contributions
are unrelated.

In LR-symmetric models with nonminimal particle con-
tent, the presence of extra particles may complicate the
structure of the seesaw. In that case, in general there is no
duality (at least in the form discussed in this Letter).

We shall now consider the illustrative examples of one
and two lepton generations as well as the realistic three
generations case.

One lepton generation.—In this case m�, y, and f are
merely complex numbers. Equation (6) is a quadratic
equation for f with solutions

f
 �
m�

2vL



��������������������������
m2
�

4v2
L

�
v2y2

vLvR

s
: (8)

The quantities f
 satisfy f� � f� � m�=vL, i.e., are du-
als of each other. In the limit jm�j

2 � 4jy2v2vL=vRj,
Eq. (8) yields

f� ’ �
y2v2

m�vR
; f� ’

m�

vL
�
y2v2

m�vR
: (9)
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This limit leads to the dominance of type I or II seesaw in
the light neutrino mass, depending on which solution, f�
or f�, is realized in nature. For vL � jm�j, the solution f�
violates the perturbative unitarity and must be discarded,
so that only f� can be acceptable; a necessary condition
for either solution to be physical is jvRj * jv2y2=m�j.

When the two terms under the square root in Eq. (8) are
of the same order, the contributions of type I and type II
terms to m� are also of the same order (mixed seesaw).
Finally, in the limit jm�j

2 � 4jy2v2vL=vRj, one has mI
� ’

�mII
� and jmI;II

� j � jm�j; i.e., in this case there is a strong
cancellation of the two terms in Eq. (6).

Consider now n fermion generations with no mixing
(which means that f and y are diagonal in the same basis).
This case can be described as n replicas of the one-
generation case: there exist n pairs of solutions f�i�
 (i �
1; . . . ; n) to n quadratic equations, and each solution for the
matrix f corresponds to picking one value f�i�� or f�i�� from
each of n pairs. The number of solutions is thus 2n.
Switching on the mixing will change the nature of the
solutions (which will no longer be diagonal), but not their
number [8].

Two lepton generations.—In this case m�, y, and f are
symmetric 2	 2 complex matrices. For definiteness, we
shall consider the ���; ��� sector of m�. The matrices f�1

and y are given by

f�1 �
1

F
f33 �f23

�f23 f22

� �
; y �

y�2 y�3

y�2 y�3

� �
; (10)

where F � detf and y�2 � y�3. Defining x � vLvR=v2,
one can rewrite Eq. (6) in components as

xF�f22 �m��� � f33y2
�2 � 2f23y�2y�3 � f22y2

�3;

xF�f33 �m��� � f33y
2
�3 � 2f23y�3y�3 � f22y

2
�3;

xF�f23 �m��� � f33y�2y�3 � f23�y�2y�3 � y
2
�3�

� f22y�3y�3;

(11)

where m � m�=vL. This is a system of coupled cubic
equations for the matrix elements of f. Usually, solving
systems of this kind presents serious difficulties; one has to
resort to numerical methods, whose application is compli-
cated by the fact that nonlinear equations have multiple
solutions, and their number is often not known in advance.
We shall, however, show now that the system of Eq. (11)
admits a simple exact analytic solution. To find this solu-
tion, we develop here a method that may also prove to be
useful for solving similar systems of coupled nonlinear
equations appearing in different contexts.

Let us rescale all the matrices of interest according to

fij �
����
�
p
f0ij; mij �

����
�
p
m0ij; yij �

����
�
p
y0ij; (12)

where � is an as yet arbitrary complex number. The scaling
law was chosen in such a way that in terms of the primed
variables the system of equations for f0ij has the same form
as Eq. (11). Next, we fix the value of � by requiring F0 �
2-2
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detf0 � 1. The system of equations for f0ij then becomes
linear and can be readily solved. Expressing the primed
variables back through the unprimed ones and substituting
them into the condition F0 � 1, one obtains a 4th order
characteristic equation for �. Solving it completes the
solution of the problem.

Since the matrix y is symmetric, one can go, without a
loss of generality, to the basis where y is diagonal: y �
diag �y2; y3�. The solution for the matrix f then takes the
form

f �
x�

�x��2 � y2
2y

2
3

x�m�� � y2
2m�� m���x�� y2y3�

   x�m�� � y
2
3m��

 !
;

(13)

where � has to be found from the characteristic equation

��x��2 � y2
2y

2
3�

2 � x�detm�x�� y2y3�
2x�

� �m��y3 �m��y2�
2�x��2� � 0: (14)

Equation (14) is quartic in � and so has in general four
complex solutions, leading to four solutions for the matrix
f, as expected.

Rewriting Eq. (6) as xf̂ � �yf�1y and taking the deter-
minants of both sides, one finds x2FF̂ � y2

2y
2
3, where F̂ �

detf̂. Since the condition F0 � 1 corresponds to F � �,
this equation leads to x2��̂ � y2

2y
2
3. With the help of this

relation, it is straightforward to check that the four struc-
tures of f defined by Eqs. (13) and (14) form two dual
pairs, and it is also easy to express the four solutions of
Eq. (14) in a closed form:

x�i �
1
4�xdetm� r
 


����������������������������������������������������������������
2�detm�2x2� 4kx� 2xr
 detm

q
�;

(15)

where

r
 � 

�������������������������������������������������������
�detm�2x2 � 4kx� 16y2

2y
2
3

q
;

k � m2
��y

2
3 � 2m2

��y2y3 �m
2
��y

2
2:

(16)

Equation (15) gives two pairs of dual solutions, one of
them corresponding to r� and another to r�. In each dual
pair the solutions differ by the sign in front of the radical.

From Eq. (13) one can see that when a solution �1

satisfies jx�1j � jyiyjj (i; j � 2; 3), one obtains f1 ’ m,
which corresponds to type II seesaw case. Then the dual
solution x�2 � x�̂1 � y2

2y
2
3=�x�1� has modulus � jyiyjj

and the corresponding matrix f2 � f̂1 takes the form
obtained in type I seesaw case. Notice that Eqs. (15) and
(16) imply that the condition jx�1j � jyiyjj can only be
satisfied in the limit jm��m��j � 4jyiyj=xj (�;�; �; � �
�; �). This condition ensures the existence of solutions
with the dominance of one seesaw type, in analogy with
the one-generation case. However, in general not all four
solutions correspond to the one seesaw type dominance in
this limit: if j detmj � 4jyiyj=xj, the remaining two dual
solutions f3 and f4 are of mixed type. When jm��m��j &
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4jyiyj=xj, in general all four solutions are of mixed type. A
similar classification applies to the 3-generation case.

Three lepton generations.—In this case f, y, and m �
m�=vL are complex symmetric 3	 3 matrices. As in the 2-
generation case, we go to the basis where y is diagonal:
y � diag �y1; y2; y3�. Quite analogously to the derivation of
Eq. (11), one can obtain from (6) equations for the matrix
elements of f and its dual f̂:

xF�fij �mij� � yiyjFij; (17)

xF̂�f̂ij �mij� � �xF̂fij � yiyjF̂ij; (18)

where F � detf, F̂ � detf̂ as before, and

Fij �
1
2	ikl	jmnfkmfln;

F̂ij �
1
2	ikl	jmnf̂kmf̂ln � Mij � Tij � Fij;

Mij �
1
2	ikl	jmnmkmmln; Tij � 	ikl	jmnfkmmln:

Taking the determinants of both sides of the equation xf̂ �
�yf�1y, one obtains

x3FF̂ � �y2
1y

2
2y

2
3: (19)

Equation (17) is a system of six coupled quartic equa-
tions for the elements fij (note that F is cubic in fij in the
3-generation case). Since the right-hand sides of these
equations are quadratic rather than linear in fij, a simple
rescaling would not immediately linearize the system.
However, using the dual system of Eqs. (18) one can write
for these right-hand sides yiyjFij � �xF̂fij � yiyj�Tij �
Mij�. The resulting system of equations can now be line-
arized by a rescaling, similar to that in Eq. (12), except that
the scaling factor is now �1=3 rather than

����
�
p

. Once again,
we fix � by requiring F0��� � 1; Eq. (19) then yields F̂0 �
��y01y

0
2y
0
3�

2=x3. The linearized system is

�x3 � �y01y
0
2y
0
3�

2�f0ij � x
3m0ij � x2y0iy

0
j�T
0
ij �M

0
ij�: (20)

The characteristic equation for � is now of 8th order and its
solutions lead to four pairs of dual solutions f and f̂ for the
system (17). This 8th order equation and the resulting
general analytic solution for f are rather lengthy and will
be given elsewhere; here we present the simplified case
y1 ! 0.

The case jy1j � jy2;3j is actually physically well moti-
vated, in view of the smallness of the masses of first-
generation charged fermions. Notice that for y1 � 0 the
matrix y is not invertible, so that the proof of the duality of
solutions for f breaks down. However, one can check that
the solutions of Eq. (17) for y1 � 0 are the same as the ones
obtained by setting y1 � 0 in Eq. (20). In other words, one
can safely use the duality and take the limit y1 ! 0 in the
final result. The solution for the symmetric matrix f is then
given in components as
2-3
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f11 � mee; f12 � me�; f13 � me�;

f23 �

�
m�� �

y2y3me�me�

x�

��
d2;

f22 �

�
m�� �

y2
2

x�

�
M22 �

y2
3meem

2
e�

x�

���
d1;

f33 �

�
m�� �

y2
3

x�

�
M33 �

y2
2meem

2
e�

x�

���
d1;

(21)

where

d1 � 1�
y2

2y
2
3m

2
ee

�x��2
; d2 � 1�

y2y3mee

x�
: (22)

In the considered limit y1 ! 0 the characteristic equa-
tion for � reduces to

�4f��x��2 �m2
eey2

2y
2
3�

2 � x�detm�x��meey2y3�
2x�

� �M22y2 �M33y3�
2�x��2�g � 0: (23)

A comment on the duality and multiplicity of solutions
in the 3-generation case is in order. If a solution � of the
general characteristic equation is nonzero in the limit
y1 ! 0, then �̂ � �y2

1y
2
2y

2
3=�x

3�� ! 0, which means that
the determinant of f̂ vanishes. Thus, the dual of any
solution that is finite for y1 ! 0 becomes singular and
must be discarded. Therefore, in this limit there are only
four (rather than eight) solutions with no duals. The cor-
responding values of � are the zeros of the factor in curly
brackets in Eq. (23), which is quartic in �. From the
comparison with Eq. (14) a strong connection with the
pure 2-generation case is evident, so that a different duality
among the four remaining solutions exists: if � satisfies
Eq. (23), so does ~� � y2

2y
2
3m

2
ee=�x2��, and it corresponds to

~f � ~m� f, where ~m�� � m�� �me�me�=mee. There are
two pairs of such solutions.

Concluding remarks.—We have revealed and analyzed
an interesting duality property of the seesaw mechanism
with contributions of both RH neutrinos and isotriplet
Higgs bosons in the presence of discrete left-right symme-
try. In particular, it has been shown that for a given mass
matrix of light neutrinos m� and Dirac-type Yukawa cou-
pling matrix y, there are multiple solutions for the
Majorana-type Yukawa coupling matrix f and thus for
the matrix of RH neutrinos MR. The number of solutions,
however, does not exceed eight (for three lepton genera-
tions), and with the help of the formalism developed here
they can be readily analyzed one by one. In contrast to this,
in models where type I and type II contributions to neutrino
mass are unrelated, there are in general infinitely many
possible decompositions of m� into these two parts.

The discrete LR symmetry of the underlying theory
must be broken at some scale vLR, and the renormalization
group evolution below this scale may result in a violation
of conditions (5) at lower energies. The corrections to the
matrix elements of y and f depend logarithmically on the
ratios of the masses of RH neutrinos and Higgs triplets and
are suppressed by loop factors and possibly by small

PRL 96, 061802 (2006)
06180
couplings. We checked numerically that the reconstruction
of the matrix f as performed in this Letter remains accurate
at a percent level if the LR-violating corrections to the
matrix elements are of the order of percent. This stability,
however, may be lost if small matrix elements receive
corrections proportional to the large ones. This issue re-
quires a dedicated study, which is beyond the scope of the
present Letter.

Possible applications of our results include the
bottom-up reconstruction of the mass matrix of heavy
RH neutrinos and model building. The bottom-up approach
requires the knowledge of the light neutrino mass matrix
and of the Dirac-type Yukawa couplings y. The former is
partially known from the experiment (absolute mass scale,
1–3 mixing angle, and CP violating phases have not been
measured yet), whereas for y one needs both data and
additional theoretical assumptions, such as quark-lepton
symmetry or grand unification. Model builders can use our
results to immediately find out the allowed structures of the
triplet Yukawa couplings f that can successfully reproduce
the low-energy phenomenology, which may help them to
systematically look for the underlying symmetries of the
mechanism of lepton mass generation.
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G. Senjanović, Phys. Rev. Lett. 44, 912 (1980).

[3] M. Magg and C. Wetterich, Phys. Lett. 94B, 61 (1980);
G. Lazarides, Q. Shafi, and C. Wetterich, Nucl. Phys.
B181, 287 (1981); J. Schechter and J. W. F. Valle,
Phys. Rev. D 22, 2227 (1980); R. N. Mohapatra and
G. Senjanović, Phys. Rev. D 23, 165 (1981).

[4] M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45
(1986).

[5] J. C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974); R. N.
Mohapatra and J. C. Pati, Phys. Rev. D 11, 566 (1975);
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