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Almost Certain Escape from Black Holes in Final State Projection Models
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Recent models of the black-hole final state suggest that quantum information can escape from a black
hole by a process akin to teleportation. These models rely on a controversial process called final-state
projection. This Letter discusses the self-consistency of the final-state projection hypothesis and inves-
tigates escape from black holes for arbitrary final states and for generic interactions between matter and
Hawking radiation. Quantum information escapes with fidelity � �8=3��2: only half a bit of quantum
information is lost on average, independent of the number of bits that escape from the hole.
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If information escapes as black holes evaporate, then
black holes could function as quantum computers [1–3].
Recently, Horowitz and Maldacena proposed a model of
black-hole evaporation that imposes a final-state boundary
condition at the black-hole singularity [4]. The resulting
projection onto a final state gives rise to a nonlinear time
evolution for the quantum states in and outside of the black
hole, which permits quantum information to escape from
the black hole by a process akin to teleportation. The
Horowitz-Maldacena model requires a specific final state
that is perfectly entangled between the matter that formed
the black hole and the incoming Hawking radiation.
Whether or not quantum gravity supports such a final state
remains to be seen. In addition, even with the proper final
state, interactions between the incoming Hawking radia-
tion and the collapsing matter can spoil the unitary nature
of the black-hole evaporation [5], destroying some or all of
the quantum information inside the hole [6,7].

The purpose of this Letter is to examine the robustness
of the escape of quantum information during black-hole
evaporation in final-state projection models. Final-state
projection is a nonlinear quantum mechanical process
[8–16] that has been studied extensively since its introduc-
tion in 1964 [17–21]. While controversial, final-state pro-
jection is apparently physically self-consistent. If final-
state projection actually takes place at final singularities,
this Letter shows that for projection onto any final state at
the singularity (independent of the exact details of quan-
tum gravity) and for almost all interactions between the
matter and incoming Hawking radiation, properly encoded
classical information escapes from the hole with certainty.
Of the quantum information that escapes from the hole,
only one-half a qubit is lost on average, regardless of the
number of bits of quantum information in the hole to begin
with. More precisely, the state of the matter that formed the
hole is preserved under black-hole evaporation with a
fidelity of f � �8=3��2 � 0:85. Individual quantum bits
escape with a fidelity that approaches one as the number of
bits in the hole becomes large.

The Horowitz-Maldacena model for black-hole
evaporation.—The Horowitz-Maldacena (HM) model is
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described in [3,4]. Black holes evaporate by absorbing
negative-energy ‘‘incoming’’ Hawking radiation and by
emitting positive-energy ‘‘outgoing’’ Hawking radiation.
Let the dimension of the Hilbert space for the collapsing
matter inside the black hole be N. In the ordinary semi-
classical treatment of black-hole evaporation, the incoming
and outgoing Hawking radiation emitted at some time is in
an entangled state that yields a canonical ensemble for the
outgoing radiation. Horowitz and Maldacena assume a less
familiar ‘‘microcanonical’’ form for the Hawking radia-
tion:

j�iin�out �
1����
N
p

XN
j�1

jjiin � jjiout; (1)

where fjjiing is an orthonormal basis for the Hilbert space
Hin of the incoming Hawking radiation and fjjioutg is an
orthonormal basis for the Hilbert space Hout of the out-
going Hawking radiation. The states jjiin and jjiout repre-
sent multiparticle states with energy equal to the mass of
the hole. Because of the equivalence of the canonical and
microcanonical ensembles in statistical mechanics [22],
both the canonical and microcanonical forms for the
Hawking radiation allow almost all information to escape
from the hole.

Let j�imatter�in 2 Hmatter �Hin be the final state onto
which the collapsing matter together with the incoming
Hawking radiation is projected at the singularity. Horowitz
and Maldacena postulated a form for this state of

j�imatter�in �
1����
N
p

XN
k�1

�Sjkimatter� � jkiin; (2)

where S is a unitary transformation acting on the matter
states alone. The usual analysis of quantum teleportation
shows that for states of this form, the transformation from
the state of the collapsing matter to the state of the out-
going Hawking radiation is

T � matter�inh�j�iin�out � S=N: (3)

Note that in Eq. (3), only the in parts of the two states are
contracted with each other. Equation (3) reflects the fact
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that, when one takes a state entangled between two Hilbert
spaces, in and out, and contracts the in part together with
the in part of a state entangled between the in Hilbert space
and a third Hilbert space, matter, the result is a trans-
formation between the matter and out spaces. The factor
1=N reflects the fact that if this were conventional tele-
portation, then this particular final state would occur only
with probability 1=N2. In final-state projection, however,
only one final state can occur: accordingly, the final trans-
formation from collapsing matter to outgoing Hawking
radiation is renormalized, and the net result is the unitary
transformation S. In the HM model, final-state projection
leads to a unitary transformation between collapsing matter
and the outgoing Hawking radiation.

Final-state projection.—Final-state projection is an in-
trinsically nonlinear process and shares the virtues and
vices of other proposals for nonlinear quantum mechanical
processes. Escape of quantum information from black
holes via final-state projection is similar to the use of
nonlinear quantum mechanics to provide superluminal
communication as described (and rejected) in [8–10], to
violate the second law of thermodynamics [11], or to
solve NP-complete problems [12]. Such nonlinear quan-
tum effects have been investigated experimentally under
non-Planckian conditions and ruled out to a high degree of
accuracy [13–16] (Refs. [6,7] propose similar tests of such
nonlinear quantum effects in a ‘‘normal’’ environment).

Final-state projection was introduced by Aharonov,
Bergmann, and Lebowitz to restore time symmetry in
quantum mechanics [17]. The process of projecting onto
a final state is well formulated in Griffiths’ consistent
histories approach to quantum mechanics [18]. (See also
the work of Schulman on the reversal of the thermody-
namic arrow of time in classical and quantum systems
[19].) The initial investigations of final-state projection in
a cosmological context was performed by Gell-Mann and
Hartle [20], using decoherent histories. In this formulation
of quantum mechanics, the probability of obtaining a
particular set of measurement results given projection
both onto an initial state and onto a final state is just the
conditional probability that those outcomes occur, given a
final measurement whose result yields the outcome corre-
sponding to the final-state projection. Because of this
relation to conditional probability in conventional quantum
mechanics [21], although final-state projection can give
rise to superluminal communication, as in the case under
consideration here, it cannot give rise to the usual causal
paradoxes that arise under superluminal communication
(such as the ‘‘grandfather paradox’’).

For the same reason, final-state projection cannot renor-
malize positive quantities to infinite ones. In particular, let
the expectation value of some quantity A in for a conven-
tional quantum measurement be �A, and let p be the proba-
bility of the final state. The Markov inequality then implies
the following.
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Theorem: Final-state projection can increase the expec-
tation value �A of a positive quantity by at most a factor
1=p.

So as the usual quantum mechanical probability p of the
final state becomes small, the expectation values of opera-
tors can be renormalized by a larger and larger amount. But
for well-defined final-state projection they do not become
infinite. Massar and Parentani [23] showed in the context
of black-hole geometries that projecting onto certain final
states at infinity yields infinite energy densities at the
horizon. Reference [23] and the theorem above suggest
that we should restrict our attention to final states that yield
finite energy density near the horizon.

Despite its somewhat dubious provenance, nonlinear
quantum mechanics including final-state projection might
hold sway in extreme Planckian regimes such as the black-
hole singularity. Indeed, there seems to be no problem with
initial state projection at initial singularities: our universe
apparently started out in a highly regular state. Final-state
projection at final singularities simply restores time sym-
metry to this picture [17–21]. In the absence of a full
theory of quantum gravity, we are free to postulate such
an effect and to investigate its consequences.

Almost certain escape from a black hole.—Even in the
presence of final-state projection, without further assuran-
ces that go beyond the HM model, the escape of quantum
information from a black hole is by no means certain.
Gottesman and Preskill [5] point out that if the incoming
Hawking radiation interacts with the collapsing matter
within the black hole (as is likely), then the HM model
no longer preserves quantum information. In particular, let
the interaction between incoming Hawking radiation and
matter be given by a unitary transformation U. The trans-
formation between the state of the collapsing matter and
the state of the outgoing Hawking radiation is then

T � matter�inh�jUj�iin�out: (4)

Gottesman and Preskill note that if all U’s are allowed, T
can be any matrix satisfying

P
m;njhmjTjnij

2 � 1, includ-
ing transformations that completely destroy the quantum
information in the matter, leading to purely thermal
Hawking radiation. In general, if the state Uj�imatter�in is
not perfectly entangled, then some quantum information in
the matter is lost.

For the purposes of using a black hole as a quantum
computer, the key question is how much quantum infor-
mation is lost on average due to such interactions. I now
show that for any final state, not just the special HM states,
and for almost any U, classical information escapes from
the hole with certainty, and quantum information escapes
from the hole with fidelity � �8=3��2 � 0:85. (Equiva-
lently, the information escapes for any U and for almost
any final state.) Essentially, all but half a qubit of the
quantum information escapes. This fidelity holds in the
limit N � 1 and is independent of the exact number of bits
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escaping from the hole: it is the fidelity of escape for the
entire state of the collapsing matter. Individual quantum
bits inside the hole escape with higher fidelity. In the limit
N � 1, individual quantum bits escape from the hole with
fidelity arbitrarily close to 1.

Let j�imatter�in be any final state, including a product
state, and let U be a random unitary transformation on the
matter and incoming Hawking radiation, selected accord-
ing to the Haar measure. [The Haar measure is the unique
measure over U�n� that is invariant with respect to unitary
transformation.] In particular, the final state could be the as
yet unknown correct final state specified by the as yet
unknown correct theory of quantum gravity. Because U
is selected according to the Haar measure, the state

j imatter�in � Uj�imatter�in (5)

is a random pure state of the matter and incoming Hawking
radiation, i.e., a pure state selected according to the uni-
form measure on the sphere in N2 dimensions. That is, it is
a random state selected according to the Hilbert-Schmidt
measure. The random nature of U implies that the escape
of quantum information from a black hole does not depend
on details of the final state.

Because j imatter�in is random, it is not perfectly en-
tangled. As a result, black-hole evaporation will not pre-
serve all the quantum information in the collapsing matter.
But by the same token, because j imatter�in is random, it is
almost perfectly entangled for large N. In particular, a
typical random state is within one-half a qubit of maximum
entanglement.

More precisely, a random state in Hmatter �Hin can be
written in Schmidt form as

j imatter�in �
X
‘

�‘j‘i0matter � j‘i
0
in: (6)

The distribution of the Schmidt coefficients �‘ for random
states is known [24–26]. A random state is almost per-
fectly entangled [27–30]: the average entropy of entangle-
ment,�

P
‘�

2
‘log2�

2
‘, is within one-half bit of its maximum

possible value, log2N. It is the high entanglement of ran-
dom states that leads to the escape of information from the
hole.

We now can calculate the average fidelity with which a
state for the collapsing matter fields

j�imatter �
X
‘

�‘j‘i
0
matter (7)

is transferred to the outgoing Hawking radiation.
First, look at what happens to the information inside the

hole under final-state projection. Action of U on j�i
together with the incoming Hawking radiation, followed
by projection onto the final state j�imatter�in, yields a trans-
formation from the matter to the outgoing Hawking radia-
tion

T � matter�inh j�iin�out: (8)
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The (unnormalized) state of the outgoing Hawking radia-
tion is

j�iout �
1����
N
p

X
‘

�‘�‘j‘i0out; (9)

where fj‘i0outg is a basis for the Hilbert space of outgoing
Hawking radiation, related to the basis fj‘i0matterg for the
Hilbert space for the collapsing matter via a unitary trans-
formation T0. Because the normalization of this state de-
pends in a nonlinear fashion on the �‘, this is a nonlinear
transformation of the input state of the matter.

Now look at how quantum information escapes from the
hole. Comparing the (normalized) outgoing state of the
Hawking radiation with T0 times the state of the collapsing
matter, we obtain

jouth�jT
0j�imatterj

2 � �
����
N
p X

‘

�‘j�‘j
2�2: (10)

Since a typical state has j�‘j
2 � 1=N, the state of the

collapsing matter is transferred to the state of the outgoing
Hawking radiation with a fidelity

f �

 
1����
N
p

X
‘

�‘

!
2

: (11)

This approximate result can be confirmed using standard
treatments of teleportation with imperfectly entangled
states [29]. The maximum mean teleportation fidelity at-
tainable using imperfectly entangled states with Schmidt
coefficients �‘ is

�f �
1

N � 1

"
1�

 X
‘

�‘

!
2�
: (12)

This fidelity is attained for the standard teleportation pro-
tocols. Because escape from a black hole via final-state
projection is equivalent to teleportation with a fixed mea-
surement outcome, this is also the mean fidelity for escape
from a black hole.

The techniques of [26] now allow us to estimate the
value of �f. For N � 1, we have�X

‘

�‘

�
�

����
N
p ��2�

��3=2���5=2�

�
1�O

�
1

N

��
�

8

3�

����
N
p

:

(13)

As a result, for N � 1, we have

�f �
�

8

3�

�
2
� 0:85: (14)

Quantum information escapes from the hole with fidelity
� 0:85. (Note that in this estimate we are approximating
h�
P
‘�‘�

2i by h�
P
‘�‘�i

2; this approximation is accurate
because correlations between �‘; �‘0 go to zero in the limit
that N � 1.)
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This fidelity is the fidelity for escape of the entire state of
the collapsing matter. The fidelity of escape of individual
quantum bits is higher and approaches 1 asymptotically as
N becomes large. Because the escape fidelity lies above the
threshold required for quantum error correction, suitably
encoded quantum information escapes from the black hole
with fidelity arbitrarily close to 1. Given final-state projec-
tion, escape from a black hole is almost certain. In the case
that the Hawking radiation has the normal canonical dis-
tribution instead of the microcanonical form assumed in
[4], the fidelity in Eqs. (10)–(14) will be slightly dimin-
ished because the Hawking radiation is no longer perfectly
entangled, but almost all of the quantum information in the
hole still escapes.

The above demonstration of almost certain escape from
a black hole via final-state projection relies on a random
interaction between the collapsing matter and the incoming
Hawking radiation. As only a finite proper time exists for
interaction between the matter and the incoming Hawking
radiation, this interaction is not truly random. What is
important for the escape of the quantum information is
not true randomness, however, but entanglement. We have
recently demonstrated both theoretically and experimen-
tally that pseudorandom states and transformations, imple-
mented by quantum logic circuits with depth of O�2n�
gates for n � log2N qubits, exhibit the same Schmidt
coefficient statistics as true random states and transforma-
tions [30]. In other words, most local interactions between
n qubits give rise to states whose entanglement allows
almost certain escape from a black hole. In particular, if
the final plunge into the singularity is chaotic, the corre-
sponding quantum transformation is typically pseudoran-
dom [30]. Accordingly, we may reasonably hope that the
final state, whatever it is, is sufficiently entangled to give
high fidelity transfer of the state of the matter within the
hole to the state of the outgoing Hawking radiation.

The results of this Letter suggest that if black holes
evaporate via final-state projection, they might make
good quantum computers. The fidelity of transfer of quan-
tum information is better than what is required for robust
quantum computation. Indeed, if all one wants is a yes or
no answer from the computation, i.e., a classical bit, then
the black hole can deliver the answer with certainty.

Note that a person outside the hole must know the exact
interaction that occurred between the collapsing matter and
the incoming Hawking radiation in order to reconstruct the
information escaping from the hole. Even when that inter-
action is known, until the hole is almost entirely evapo-
rated, the outgoing Hawking radiation appears essentially
random. Final-state projection will have to await experi-
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mental and theoretical confirmation before black holes can
be used as quantum computers. It would be premature to
jump into a black hole just now.

The author thanks A. Hosoya for bringing this issue to
his attention.
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[26] H.-J. Sommers and K. Życzkowski, J. Phys. A 37, 8457

(2004).
[27] D. N. Page, Phys. Rev. Lett. 71, 1291 (1993).
[28] S. Sen, Phys. Rev. Lett. 77, 1 (1996).
[29] K. Baraszek, Phys. Rev. A 62, 024301 (2000); quant-ph/

0002088.
[30] J. Emerson, Y. S. Weinstein, M. Saraceno, S. Lloyd, and

D. Cory, Science 302, 2098 (2003).


