
PRL 96, 060601 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
17 FEBRUARY 2006
Fractionalization, Topological Order, and Quasiparticle Statistics
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We argue, based on general principles, that topological order is essential to realize fractionalization in
gapped insulating phases in dimensions d � 2. In d � 2 with genus g, we derive the existence of the
minimum topological degeneracy qg if the charge is fractionalized in units of 1=q, irrespective of
microscopic model or effective theory. Furthermore, if the quasiparticle is either boson or fermion, it must
be at least q2g.
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Fractionalization of quantum numbers has been a focus
of condensed matter physics in recent years. It refers to the
emergence of a collective excitation having fractional
quantum numbers with respect to the elementary particles
(such as electrons), in a strongly correlated system. The
notion of fractionalization is not only fascinating in itself,
but also has been related to other intriguing concepts in
theoretical physics as discussed in the following.

At present, several different systems exhibit the fraction-
alization [1–10], at least theoretically. While the details
naturally depend on each model under consideration, the
structure of the excitation spectrum is efficiently described
in terms of a gauge theory. More precisely the excitations
consist of objects that have long ranged nonlocal ‘‘statis-
tical’’ interactions with each other, which may be encoded
as an Aharanov-Bohm gauge interaction. This is well
known in the fractional quantum hall effect where the
fractionalized quasiparticles also have fractional statistics.
Similarly in the fractionalized liquids described in
Refs. [3–8], there are vison excitations that have long
range statistical interactions with the fractionalized parti-
cles (such as the spinons in a spin liquid).

This emergent gauge structure generally implies the
existence of a certain kind of order—dubbed topological
order—associated with the global properties of the
ground-state wave function [11], which is also commonly
found in the above examples. A characteristic signature of
the topological order is the ground-state degeneracy de-
pending on the topology of the system. This cannot be
understood as a consequence of a conventional spontane-
ous symmetry breaking, which is the standard mechanism
behind the ground-state degeneracy. The intriguing nature
and consequences of the topological order is best under-
stood in the fractional quantum Hall liquid (FQHL) [11],
although some of the concepts are applicable to other
systems. In the gauge theory picture, the topological de-
generacy could be understood with different ‘‘vacua’’ cor-
responding to a different number of vortices trapped in
each ‘‘hole’’ of the space (such as the torus).

However, these developments apparently leave open the
question on whether there is a different way to realize
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fractionalization without the emergent gauge structures.
As such, at this point it is also unclear whether the topo-
logical order and associated ground-state degeneracy are
necessary to have fractionalization. As we are still far from
the complete classification of the fractionalized phases,
and many novel examples of fractionalization will likely
be found in the future, these questions are of significant
importance.

In this Letter, we demonstrate that there is indeed a
general and direct connection between the fractionaliza-
tion and the topological order, in the specific context of
systems with a fully gapped spectrum. Generalizing the
gauge invariance argument presented in Ref. [12], the
existence of the topological order is shown to follow just
from the fractionalization, irrespective of microscopic
details.

As discussed before, the known examples of the frac-
tionalization are rather suggestive of such a universal
relation. In the several examples of fractionalization (at
zero magnetic field) discussed recently [3–10], the degen-
eracy is at least q2g-fold in a system on a d � 2 dimen-
sional surface with genus g, if the fractionalization occurs
in the unit of 1=q. However, we must recall that the
Laughlin FQHL does exhibit a ground-state degeneracy,
but only qg-fold [13,14]. (See also Ref. [10].) We will also
clarify the difference between the cases with q2g-fold and
qg-fold degeneracy, which turns out to be related to the
statistics of the quasiparticles. Not surprisingly, our argu-
ment is closely related to the earlier studies on the topo-
logical order in FQHL especially in Refs. [13,14], and that
in systems of anyons [15].

Now let us define the problem in a general setting. We
consider a system defined by a certain microscopic
Hamiltonian of interacting particles, with an exact U�1�
global symmetry. With the global U�1� symmetry, we may
assign a (fictitious) charge to each particle, with the total
charge being a conserved quantity. We take the unit in
which the elementary charge is unity, so that the charge
of all the particles appearing in the microscopic model is an
integer. We can now also introduce a (fictitious) external
U�1� gauge field (‘‘electromagnetic field’’) coupled to the
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charge. We set @ � c � 1 so that the unit flux quantum is
given by 2�.

The ground state is generally a complicated state in
terms of the original particles. Here we assume for sim-
plicity that there is a finite gap above the (possibly degen-
erate) ground state(s). We further assume that the
elementary excitations of the system are well-defined qua-
siparticles and quasiholes. The quasiparticle may carry a
charge that is a fraction of the original unit charge, thereby
we define the fractionalization. This definition is very
natural and is independent of the concrete model or mecha-
nism of the fractionalization, while it naturally applies to
all the known cases. Let us assume that the fractional
charge of the quasiparticle is p=q, where p and q are
mutually prime integers.

For simplicity, let us, for a moment, consider a system
on a d � 2 torus of sufficiently large size Lx � Ly. We will
comment on other cases later. We define the following
process as introduced in Ref. [14]. First, we create a
quasiparticle and its antiparticle (quasihole) out of the
vacuum (ground state) at some location, and then move
the quasiparticle to the�x direction, so that it encircles the
torus to come back to the original location and to meet the
quasihole. Finally, we pair annihilate the quasiparticle and
quasihole. Here we assume that this process can be realized
by a unitary time-evolution operator T x with respect to a
properly chosen time-dependent Hamiltonian, e.g., with a
time-dependent local potential to create and drag the qua-
siparticle. Thus we exclude quantum ‘‘glassy’’ systems as
proposed in Ref. [16].

Similarly, we introduce another unitary operator T y,
corresponding to creation of a quasihole-quasiparticle
pair and annihilation after winding in the y direction. It is
expected that T x;y bring any state in the ground-state
manifold state back, at least approximately, to a (possibly
different) ground state.

Next we consider an adiabatic insertion of a unit flux
quantum �0 � 2� through the hole of the torus, inducing
an (fictitious) electric field in the x direction. This may
again be realized by a time evolution in which the x
component of the vector potential is gradually increased
from Ax � 0 to Ax � 2�=Lx in the Hamiltonian. Thus it is
represented by a unitary time-evolution operator F x. We
also define a similar operator F y that corresponds to an
adiabatic insertion of a unit flux quantum through the other
hole, inducing the y component of the vector potential. We
assume that these operations do not close the gap to
excitations above the ground-state manifold and thus bring
any ground state to a ground state. In d � 2, it amounts to
assuming the system to be an insulator, while it is a
stronger assumption for d � 3 [17]. (See also Ref. [18].)

Now let us consider two operations T x and F x in
sequence. The flux insertion F x introduces the vector
potential Ax � 2�=Lx, corresponding to the unit flux quan-
tum �0 � 2� contained in the system. As we consider the
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process T x in different backgrounds, let us distinguish
them by denoting T x��� as the ‘‘encircling’’ process
defined above in the presence of the vector potential
Ax � �=Lx. The contained unit flux quantum does not
induce the Aharonov-Bohm effect on the original particles
of integral charge. However, for the quasiparticle with the
fractional charge p=q, the same vector potential Ax �
2�=Lx still gives a nontrivial Aharonov-Bohm phase
e2�ip=q when the quasiparticle completes the encircling
process. Thus we obtain a relation

T x��0�F x � e2�ip=qF xT x�0�: (1)

On the other hand, because the microscopic model is
given in terms of the original particles of integral charge,
any Hamiltonian with an extra unit flux quantum in the
hole of the torus is unitary equivalent to the Hamiltonian
with zero flux. Namely, the Hamiltonian H ��0� with the
unit flux quantum is related to the Hamiltonian H �0� with
zero flux as H ��0� � U�1H �0�U, by a unitary operator
U which is called as the large gauge transformation. As we
have argued previously, the encircling process T x should
be realized by a time evolution with respect to an appro-
priately chosen time-dependent Hamiltonian, again written
in terms of the original particles. Therefore, the operator
T also must obey the relation

T x��0� � U�1T x�0�U: (2)

Combining Eqs. (1) and (2), we obtain

T x�0� ~F x � e2�ip=q ~F xT x�0�; (3)

where ~F x 	 UF x. In the following, for brevity T x with-
out the argument denotes T x�0�, and likewise for T y.

This algebra between T x and ~F x is identical to that of
the magnetic translation group, which we call as the mag-
netic algebra. By our assumptions, both of these operators
map a ground state to a ground state. We thus immediately
see that the ground states must be q-fold degenerate, with
the same reasoning as was used in Refs. [14,15]. Our
argument so far is essentially contained in Ref. [12], where
the q-fold ground-state degeneracy of a FQHL is derived
based on the gauge invariance. In this Letter, we shall
present a more systematic discussion to demonstrate that
the degeneracy is topology dependent, and that the degen-
eracy is also affected by quasiparticle statistics.

For the other direction y, we obtain a corresponding
relation

T y
~F y � e

2�ip=q ~F yT y: (4)

Apparently, now we obtain two sets of the magnetic
algebra, which would imply a q2-fold degeneracy on the
torus. However, as it should not apply to the Laughlin state
where the degeneracy is known to be only q-fold, we have
to examine more carefully the interplay between Eqs. (3)
and (4).
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F x introduces the vector potential only in the x direc-
tion, to which T y is insensitive. Thus, with the large gauge
transformation combined, we have ~F xT y � T y

~F x and
likewise for ~F y and T x. Therefore, we can take the basis
in the ground-state subspace so that ~F x and T y are both
diagonalized. Let the simultaneous eigenstate (among the
ground states) of them be jfx; tyi, with fx and ty denoting
the eigenvalues of ~F x and T y, respectively. By applying
T x to this state, one obtains a new ground state belonging
to a different eigenvalue fxe�2�ip=q of ~F x because

~F x�T xjfx; tyi� � fxe
�2�ip=q�T xjfx; tyi� (5)

follows from Eq. (3). By repeated applications of T x, one
can obtain at least q different ground states as announced.

Similarly, we can apply ~F y to jfx; tyi to obtain q-fold
degenerate ground states belonging to different eigenval-
ues of T y. The question now is whether these two proce-
dures give different set of ground states. It depends on
whether (or how) the application of T x changes the eigen-
value of T y. This boils down to the commutation relation
between T x and T y, which actually reflects the statistics
of the quasiparticle. The (Abelian) anyonic statistic is
characterized by a statistical angle �, so that an exchange
of two identical particles gives rise to the phase factor e�i�.
In Refs. [14,15] it was pointed out that

T �1
x T �1

y T xT y � e�i2�: (6)

This is because the left-hand side corresponds to world
lines of the two quasiparticles forming two linked loops in
the spacetime, as illustrated in Figs. 4 and 5 in Ref. [14].

Let us first consider the simple case of either bosonic
(� � 0) or fermionic (� � �) statistics, for which T x and
T y commute from Eq. (6). Thus, applying T x does not
change the eigenvalue ty of T y while it changes the
eigenvalue of ~F x. Therefore, in this case, one can obtain
q different eigenvalues of ~F x by successively applying
T x, for each of q different eigenvalues of T y that are
obtained by application of ~F y. Thus, there are at least
q2-fold degenerate ground states corresponding to the dif-
ferent set of eigenvalues. In particular, when ~F x and ~F y

commute, the degeneracy deduced from the above set of
algebra is q2.

On the other hand, in the Laughlin state at filling fraction
1=q where q is odd, the quasiparticles are known to carry
the fractional charge 1=q (p � 1 in the previous notation)
[1], and to exhibit anyonic fractional statistics with the
statistical angle � � �=q [19]. In this case, because of
Eq. (6), we obtain

T y�T xjfx; tyi� � tye2�i=q�T xjfx; tyi�: (7)

Thus, combined with Eq. (5), an application of T x induces
the change in both the eigenvalues of ~F x and T y as
06060
�fx; ty� ! �fxe�2�i=q; tye2�i=q�: (8)

This allows the possibility that the ground-state degeneracy
on the torus to be smaller than q2. This could happen if

~F x
~F y � e

�2�i=q ~F y
~F x; (9)

when acting on the ground-state subspace. In this case,
because the application of ~F y induces exactly the same
change of the eigenvalues in Eq. (8), we can generate only
q different set of eigenvalues.

In fact, Eq. (9) is exactly what holds in the Laughlin
state. As pointed out in Ref. [14], because the quasipar-
ticles and holes in the Laughlin state can be identified with
a ‘‘vortex’’ with unit flux quantum, the encircling process
T x actually introduces a unit flux quantum threading the
hole of the torus, as F y does. Thus Eq. (9) follows.
Actually, it means that T x;y can be identified with F y;x

as far as their action in the ground-state subspace is con-
cerned. Thus the two algebra Eqs. (3) and (4) are indeed
reduced to a single magnetic algebra, leaving only the
q-fold degeneracy. On the other hand, if the statistical
angle � does not match the fractional charge of the quasi-
particles, we should have a larger degeneracy. When the
quasiparticle statistics is non-Abelian, the exact counting is
more complicated. Nevertheless, the minimum q-fold de-
generacy still holds because Eq. (3) is based on the frac-
tionalized charge and should not depend on the statistics.
The detailed discussion of the non-Abelian case is deferred
to a separate publication.

The above discussion can be generalized to a two-
dimensional system on the surface with genus g, for which
there are g pairs of intersecting elementary nontrivial
cycles. We can define the flux insertion (plus the appro-
priate large gauge transformation) operator ~F c and the
quasiparticle winding operator T c for each cycle c.
Picking one cycle from each pair, we have a set of g
nonintersecting cycles so that the operators for the different
cycles commute. Thus, for any (Abelian or non-Abelian)
statistics of the quasiparticles, we have g independent
magnetic algebras acting on the ground-state subspace
and thus the ground-state degeneracy must be at least qg.
If the quasiparticle is either a boson or fermion, we can
utilize a set of 2g magnetic algebras and the degeneracy
must be at least q2g.

The close relation between the insertion of the unit flux
quantum and trapped vortices was emphasized previously
in the Z2 gauge theory description of a fractionalized phase
[4]. The adiabatic flux insertion ~F c was also used to relate
topologically degenerate ground states in the FQHL
[11,14]. The present argument suggests that these struc-
tures are rather universal in fractionalized systems.

Our argument could also be generalized to dimensions
d � 2. Although our understanding of the topological
order is still incomplete for d � 3, our argument implies
a ground-state degeneracy in a gapped fractionalized sys-
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tem defined on a geometry with a nontrivial fundamental
group. This suggests that the topological order is essential
for the fractionalization, also in d � 3.

On the other hand, the situation is quite different in
d � 1, where the ‘‘polyacetylene’’-type fractionalization
[20] is known to occur in a conventional ordered phase
with a spontaneous breaking of the translation symmetry.
Our argument applied to d � 1 just requires the ground
state on a ring to be degenerate, as there is no higher
topology. The degeneracy can be understood as a conse-
quence of the spontaneous symmetry breaking of the con-
ventional type, rather than due to any ‘‘topological’’ order.
For d � 2, our argument reveals that the ground-state
degeneracy indeed depends on the topology, implying the
topological order. The present observation could help
clarifying the profound difference in the fractionalization
between d � 1 and d � 2.

Throughout this Letter we have assumed the system to
have a finite gap. However, the topological order can exist
also in gapless systems [4], which we have not yet ana-
lyzed. It might be interesting to extend our argument to
gapless cases. Although the concept of the ground-state
degeneracy itself becomes subtle, the (quasi-)degenerate
ground states may be identified separately from the gapless
excitations, for example, by examining the finite-size scal-
ing carefully.

To summarize, we have derived a topological degener-
acy, which indicates the presence of a topological order, in
a general (gapful) fractionalized system in d � 2. The
magnitude of the degeneracy is also related to the statistics
of the fractionalized quasiparticles. It is also notable that
the simple trick of the flux insertion together with the
gauge invariance leads to the rather strong statement, to
be added to existing applications [13,14,17,18,21–24].
Comparing with the ‘‘momentum counting’’-type applica-
tions [13,17,18,22–24] of the flux insertion, the present
argument is more powerful in the sense that it can be
applied to various topologies, to show the degeneracy is
indeed topological. The momentum counting arguments
can be applied only to a cylinder or a torus, and thus by
itself does not indicate whether the derived degeneracy is a
topological one or due to a conventional order. On the other
hand, the operator T c needed in the present argument is
introduced in a hand-waving way, and thus makes the
argument considerably less rigorous than the momentum
counting ones.
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