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Teleportation and Dense Coding with Genuine Multipartite Entanglement
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We present an explicit protocol E0 for faithfully teleporting an arbitrary two-qubit state via a genuine
four-qubit entangled state. By construction, our four-partite state is not reducible to a pair of Bell states. Its
properties are compared and contrasted with those of the four-party Greenberger-Horne-Zeilinger and W
states. We also give a dense coding scheme D0 involving our state as a shared resource of entanglement.
Both D0 and E0 indicate that our four-qubit state is a likely candidate for the genuine four-partite
analogue to a Bell state.
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Quantum teleportation, the disembodied transport of
quantum states between subsystems through a classical
communication channel requiring a shared resource of
entanglement, is one of the most profound results of quan-
tum information theory [1]. Bennett et al. [2] are the first to
show how quantum entanglement can assist in the tele-
portation of an intact quantum state

j iA1
� aj0iA1

� bj1iA1
; (1)

with a; b 2 C1 and jaj2 � jbj2 � 1, from one place to
another, by a sender, Alice, who knows neither the state
j iA1

to be teleported nor the location of the intended
receiver, Bob. In their standard teleportation protocol
T 0, Alice and Bob share a priori a pair of particles, A2

and B, in a maximally entangled Bell state, say

j�0
BelliA2B �

1���
2
p �j00iA2B � j11iA2B�: (2)

Teleportation firmly establishes the practical basis for con-
sidering the maximally entangled Bell states as basic units,
upon which bipartite entanglement can be quantitatively
expressed in terms of. Indeed, quantities like the concur-
rence [3,4] and fully entangled fraction [5] have their roots
in these states.

The teleportation of an arbitrary two-qubit state,

j�iA1A2
�

X1

i;j�0

aijjijiA1A2
; (3)

with ai;j 2 C1 and
P1
i;j�0 jaijj

2 � 1, had been studied by
Lee et al. [6] and recently by Rigolin [7]. Whereas Lee
et al. did not explicitly construct a protocol, the 16G states
defined by Rigolin in his protocol jGijiA3A4B1B2

����iA3
�

�jA4
��IB1B2

�jG00iA3A4B1B2
, with jG00i� �j0000i�j0101i�

j1010i�j1111i�=2, were actually tensor products of two
Bell states:

jG00iA3A4B1B2
� j�0

BelliA3B1
� j�0

BelliA4B2
: (4)
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This fact had been highlighted in Ref. [6]. In this Letter, we
give an explicit protocol E0 for faithfully teleporting arbi-
trary two-qubit states employing genuine four-qubit en-
tangled states j ��00i [Eq. (9)], and especially j�00i
[Eq. (18)]. This is an important consideration because
j�00i, in addition to j�0

Belli � j�
0
Belli, could be a likely

candidate for the genuine four-partite analogue to j�0
Belli.

Since our work is motivated in part by T 0, we briefly
describe it below before presenting our protocol E0. This
is followed by a detailed analysis on the entanglement
properties of j ��00i and j�00i, where we compare and con-
trast with those of the four-party Greenberger-Horne-
Zeilinger (GHZ) [8] and W [9] states. Before concluding,
we give a dense coding scheme D0 using j�00i as the
shared resource of entanglement.

In T 0, the initial complete state of the three particles,
A1, A2, and B, is a pure product state,

j iA1
h j � j�0

BelliA2Bh�
0
Bellj; (5)

involving neither classical correlation nor quantum entan-
glement between particle A1 and the maximally entangled
pair A2B. Alice cleanly divides the full information en-
coded in j iA1

into two parts, transmitting first the purely
nonclassical part via the quantum channel j�0

BelliA2B, by
performing a complete von Neumann measurement in the
Bell basis:

j�i
BelliA1A2

� ��iA1
� �0

A2
�j�0

BelliA1A2
; (6)

on the joint system consisting of particles A1 and A2. Here,
�0 � I2 is the two-dimensional identity and �i�i � 1; 2; 3�
are the Pauli matrices. We emphasize that it is a conse-
quence of the fact that j�0

BelliA1A2
is maximally entangled,

that the j�i
BelliA1A2

’s are obtainable from j�0
BelliA1A2

by
appropriate local one-particle Pauli rotation. The density
operator of Bob’s qubit �iB conditioned on Alice’s Bell
measurement outcome i is
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1

pi
trA1A2

��j iA1
h j � j�0

BelliA2Bh�
0
Bellj��j�

i
BelliA1A2

h�i
Bellj � IB��

�
1

pi
A1A2
h�0

Bellj��
i
A1
j iA1

� j�0
BelliA2B��A1

h j�iA1
�A2B h�

0
Bellj�j�

0
BelliA1A2

�
1

4pi
�iBj iBh j�

i
B; (7)
where pi � tr��j iA1
h j � j�0

BelliA2Bh�
0
Bellj��j�

i
BelliA1A2

	
h�i

Bellj � IB�� � 1=4. It follows that, regardless of the un-
known state j iA1

, the four measurement outcomes are
equally likely. Alice gains no information about the state
j iA1

from her measurement. She is left with particles A1

and A2 in some maximally entangled Bell state, without
any trace of the original j iA1

. The outcome of Alice’s
measurement constitutes the second purely classical part of
the full information encoded in j iA1

. She communicates
this 2 bits of information via a classical channel, after
which Bob applies the required Pauli rotation to transform
the state of his particle B into an accurate replica of the
original state of Alice’s particle A1. Equation (7) follows
from, and the success of T 0 is guaranteed by, the following
identity. For the maximally entangled state Eq. (2), we
have [10]

A1A2
h�0

Bellj�
0
BelliA2B �

1

2

X1

i;j�0

�A1
hij �A2

hij��jjiA2
� jjiB�

�
1

2

X1

i�0

jiiB 	A1
hij: (8)

Our protocol E0 is motivated, in particular, by Eqs. (4)
and (8). To avoid our four-qubit entangled channel from
being reducible to a tensor product of two Bell states, and
to ensure the success of faithfully teleporting any arbitrary
two-qubit state, Alice and Bob share a priori two pairs of
particles, A3A4 and B1B2, in the state

j ��00iA3A4B1B2
�

1

2

X3

J�0

jJiA3A4
� jJ0iB1B2

: (9)

The jJi’s constitute an orthonormal basis, and explicitly

j0i � cos�1j00i � sin�1j11i;

j1i � cos�1j01i � sin�1j10i;

j2i � 
 sin�1j01i � cos�1j10i;

j3i � 
 sin�1j00i � cos�1j11i:

(10)

The jJ0i’s constitute another orthonormal basis:
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j00i � cos�2j00i � sin�2j11i;

j10i � sin�2j01i � cos�2j10i;

j20i � cos�2j01i 
 sin�2j10i;

j30i � 
 sin�2j00i � cos�2j11i:

(11)

Here, 0< �1; �2; �1; �2 <�=2, and we demand that �1 �

�2, �1 � �2. In particular, we may express

j�iA1A2
�
X3

J�0

�JjJ0iA1A2
; (12)

with �J 2 C1 and
P3
J�0 j�Jj

2 � 1. By virtue of the fact
that, between A3A4 and B1B2, j ��00iA3A4B1B2

is a maximally
entangled state [compare with Eq. (2)], we may construct
the following basis of 16 orthonormal states [similar to
Eq. (6)]:

j ��00iA1A2A3A4
�

1

2

X3

K�0

jK0iA1A2
� jKiA3A4

;

j ��ijiA1A2A3A4
� ���iA1

� �jA2
� � IA3A4

�j ��00iA1A2A3A4
:

(13)

If Alice performs a complete projective measurement
jointly on A1A2A3A4 in the above basis with the measure-
ment outcome ij, then Bob’s pair of particles B1B2 will be
in the state

1
�������pij
p A1A2A3A4

h ��ijj�j�iA1A2
� j ��00iA3A4B1B2

�

�
1
�������pij
p A1A2A3A4

h ��00j���iA1
� �jA2

�j�iA1A2

� j ��00iA3A4B1B2
�

�
1

4
�������pij
p ��iB1

� �jB2
�j�iB1B2

: (14)

Here, j�iA1A2
� j ��00iA3A4B1B2

is the initial complete state of
the six particles, A1, A2, A3, A4, B1, and B2. Equation (14)
is the analogue of Eq. (7). And, as in T 0, the success of E0

is guaranteed by the following identity:
A1A2A3A4
h ��00j ��00iA3A4B1B2

�
1

4

X3

J;K�0

�A1A2
hK0j �A3A4

hKj��jJiA3A4
� jJ0iB1B2

� �
1

4

X3

J�0

jJ0iB1B2
	A1A2

hJ0j: (15)
Clearly, pij � 1=16 and Bob will always succeed in re-
covering an exact replica of the original state Eq. (12) of
Alice’s particles A1A2, upon receiving 4 bits of classical
information about her measurement result.
Now, let us consider the entanglement properties of

j ��00iA3A4B1B2
�

1���
2
p �j ��0i � j ��1i�A3A4B1B2

; (16)
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with j ��0i � �cos�12j0000i 
 sin�12j0011i 

sin�12j0101i � cos�12j0110i�=

���
2
p

and j ��1i �

�cos�12j1001i � sin�12j1010i � sin�12j1100i �
cos�12j1111i�=

���
2
p

. By inspection, we would also have
maximum entanglement between A3B1 and A4B2 if we
demand that �12 � �1 
�2 � �1 
 �2 � �12. In con-
trast, for a pair of Bell states, there is zero entanglement
between A3B1 and A4B2. Thus, in this sense, the resulting
state is ‘‘maximally’’ different from a pair of Bell states.
Furthermore, the amount of entanglement between A3B2

and A4B1 is given by the von Neumann entropy

S��A3B2
� � 
cos2�12log2cos2�12 
 sin2�12log2sin2�12;

(17)

where �A3B2
� trA4B1

�j ��00iA3A4B1B2
h ��00j�. Clearly, S��A3B2

�

has maximum value 1 when �12 � �=4. Imposing these
conditions, we obtain

j�00iA3A4B1B2
�

1���
2
p �j�0i � j�1i�A3A4B1B2

; (18)

with j�0i � �j0000i 
 j0011i 
 j0101i � j0110i�=2 and
j�1i � �j1001i � j1010i � j1100i � j1111i�=2. From
Eq. (18), we can generate a basis of 16 orthonormal states
either by applying �i and �j to A3 and A4, respectively [as
in Eq. (13)], or to A3 and B1, respectively, since A3B1 and
A4B2 are maximally entangled too. However, we cannot
generate the desired basis by applying �i and �j to A3 and
B2, respectively, since A3B2 and A4B1 are not maximally
entangled. Instead, we may have, for instance, the follow-
ing orthonormal basis:

f��0
A3
��jB2

�j�00iA3A4B1B2
; ��3

A3
��jB2

�j�00iA3A4B1B2
g (19)

for an eight-dimensional subspace. If we consider E0 for an
arbitrary two-qubit state via A3B2 to A4B1, the state of
particles A4B1 conditioned on Alice’s measurement result
ij:

1
�������pij
p A1A2A3B2

h�ijj�j�iA1A2
� j�00iA3A4B1B2

�

�
1
�������pij
p A1A2A3B2

h�00j���iA1
� �jA2

�j�iA1A2

� j�00iA3A4B1B2
�; (20)

where it follows from Eq. (13):

j�00iA1A2A3B2
�

1���
2
p �j�0i � j�1i�A1A2A3B2

; (21)

with j�0i � �j0000i � j0011i 
 j0101i � j0110i�=2 and
j�1i � �j1001i � j1010i 
 j1100i � j1111i�=2, which to-
gether with Eq. (18) yield [in contrast to Eq. (15)],
06050
A1A2A3B2
h�00j�00iA3A4B1B2

�
1

4
�j�0

BelliA4B1
	 A1A2

�h�0
Bellj

� h�3
Bellj� � j�

1
BelliA4B1

	 A1A2
�h�2

Bellj � h�
2
Bellj�:

(22)

This implies that faithful teleportation is possible only for
partially unknown entangled states such as �0j�

0
BelliA1A2

�

�1j�
1
BelliA1A2

. From here on, we focus our analysis on
j�00iA3A4B1B2

.
By construction, there is absolutely zero entanglement

between any one particle and any other particle. The en-
tanglement is purely between pairs of particles: A3A4 and
B1B2, A3B1 and A4B2, and A3B2 and A4B1. This is in
contrast to two Bell pairs where the maximal entanglement
between A3A4 and B1B2 is due to those between A3�A4�
and B1�B2�. The behavior of the entanglement associated
with j�00iA3A4B1B2

under particle loss resembles that of a
GHZ state [8,11], in that

S��� � 1; (23)

where � is the resultant density operator from partial
tracing j�00iA3A4B1B2

over any one of the four particles;
i.e., the lost particle is in a completely mixed state.
Incidentally, one can teleport perfectly an arbitrary qubit
from any one party to any other party if the other two
parties choose to cooperate as in the teleportation protocol
of Karlsson et al. [12], which employs a GHZ channel:

j iA1
� j�00iA2B1B2B3

�
1

2

X3

i�0

j�i
BelliA1A2

� j�iiB1B2B3
;

(24)

where j�0;3i � aj�0i � bj�1i, j�1;2i � aj�1i � bj�0i,
with j�0i � �j000i 
 j011i 
 j101i � j110i�=2 and
j�1i � �j001i � j010i � j100i � j111i�=2. In particular,
if B1 and B2 measure in the fj0i; j1ig basis, and together
with Alice communicate classically their measurement
results to B3, he would be able to obtain j iB3

. It is not
difficult to see that the protocol works because measure-
ments in the fj0i; j1ig basis carried out by any two parties
on j�00i establish a Bell channel across the other two
parties.

We note that � is entangled, whereas any reduced state
obtained from a GHZ state is separable. Specifically, if
particle A3 is lost, the nonzero negativity [13] between A4

and B1B2 is equal to that between B1 and A4B2. This is
surprising because the original entanglement was between
the pairs of particles, yet it is not completely destroyed due
to particle loss. In this sense, the behavior of the entangle-
ment associated with j�00iA3A4B1B2

under particle loss also
resembles that of a W state [11,9]. However, a further
particle loss will destroy all entanglement.

Lastly, j�00i truly differs from the four-qubit GHZ and
W states in that both these states do not enable the tele-
2-3
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portation of an arbitrary two-qubit state. Indeed, they are
inequivalent under stochastic local operations and classical
communication. The sixth-order four-qubit filter F �4�3 [14]
has nonzero expectation value for j�00i:

h�00jF �4�3 j�
00i�

1

2

X3

�;	;
�0

E�1�2E�1�2
E	1	2E	1	2

E
1
2E
1
2

�1:

Here, E�1�2 � h�00j��1 � ��2 � �2j�00i, E	1	2 �
h�00j�	1 � �2 � �	2 � �2j�00i, E
1
2 � h�00j�2 �
�
1 � �
2 � �2j�00i, and E�� � g�g��E� with
g� � diagf
1; 1; 0; 1g. It has the value 1=2 for the GHZ
state and 0 for the W state. On the other hand, the third
order filter F �4�1 and fourth order filter F �4�2 have expecta-
tion value 1 for the GHZ state but yield, respectively, 0 and
1 for j�00i. Therefore, j�00i is a ‘‘new’’ genuine multi-
partite entangled state. It is not distinguished by the clas-
sification for pure four-qubit states of Ref. [15]. Note that
we are not claiming that j�00i is LOCC inequivalent to
either the GHZ or W state. This would require further
work. For now, we turn our attention to dense coding [16].

A dense coding scheme D0 using j�00iA3A4B1B2
, which

‘‘mirrors’’ E0 is the following. A3 and A4 encode their
message using �iA3

and �jA4
, and send their particles to

B1 and B2, respectively. B1 and B2 then decode the mes-
sage by performing a joint measurement on all four parti-
cles in the fj�ijiA3A4B1B2

g basis. It is easy to see that D0

works perfectly, enabling A3 and A4 to communicate 4 bits
of classical information with B1B2 by sending in total
2 particles. This is impossible with a four-party GHZ or
W state. However, we note that, whereas A3 and A4 may
encode their message locally and hence independently, B1

and B2 are compelled to read the message together. One is
not able to do it without the other’s presence and coopera-
tion. This is in contrast to a straightforward extension of
the original dense coding scheme of Bennett et al. [16] to
one involving two Bell states shared between A3�A4� and
B1�B2�, where B1 and B2 can individually read the respec-
tive message from A3 and A4. We denote this scheme by
S0. This difference between D0 and S0 lies in the maximal
entanglement between A3B1 and A4B2. In terms of the
numbers of particles sent and the amount of classical
information communicated, both D0 and S0 are exactly
the same:

4 � log224 � 4log22 � 2log22� 2log22 � 2� 2: (25)

An immediate example of a situation where D0 could have
an advantage over S0 is the following: A3 and A4 wish to
send some message to both B1 and B2, which they must
both read at the same time together regardless of whether
A3 or A4’s particle reaches B1 or B2 first. We note that D0

works equally well between A3B1 and A4B2, but not be-
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tween A3B2 and A4B1 because the entanglement between
them is not maximal. In fact, from Eq. (19), we see that
only

3 � log223 � 3log22 � log22� 2log22 � 1� 2 (26)

bits of information can be transferred, if A3 cooperate with
B2 by encoding only her qubit with either �0 or �3. In this
case, A4B1 decode by measuring in the basis, Eq. (19), for
an eight-dimensional subspace. This is consistent with
Eq. (22).

In conclusion, we have shown that faithful teleportation
of an arbitrary two-qubit state and dense coding are pos-
sible with j�00i. These can similarly be achieved using two
Bell pairs. However, by construction, this state is different
from a pair of Bell states. It is a genuine four-partite
entangled state, which has properties that differ from those
of four-party GHZ andW states. It could play an analogous
role to j�0

Belli in the theory of multipartite entanglement.
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