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Driving Defect Modes of Bose-Einstein Condensates in Optical Lattices
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We present an approximate analytical theory and direct numerical computation of defect modes of a
Bose-Einstein condensate loaded in an optical lattice and subject to an additional localized (defect)
potential. Some of the modes are found to be remarkably stable and can be driven along the lattice by
means of a defect moving following a steplike function defined by the period of Josephson oscillations and
the macroscopic stability of the atoms.
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Loading and manipulating cold bosonic atoms in optical
lattices (OLs) is a fascinating and rapidly growing branch
of cold atom physics [1–3]. Recent experimental pro-
gresses with Bose-Einstein condensates (BECs) in optical
lattices [3] and the direct observation of a gap soliton [4]
have stimulated studies of the nonlinear dynamics of mat-
ter waves in periodic media (see, e.g., Refs. [3,5] and
references therein). OLs provide a tool for changing the
effective properties of atomic media allowing for the ex-
istence of solitary waves in a condensate with positive
scattering length. Moreover, OLs also provide ways for
manipulating nonlinear matter waves. For instance, smooth
modulations of an OL can be used to control the dynamics
of gap solitons [5,6], while strongly localized defects
generated by narrow laser beams have been used to induce
rotational motion of condensed atoms [7] and to study
scattering of a soliton on a defect for the sake of under-
standing BEC expansion in a random potential [8].

In this Letter we consider the combined effect of an OL
and of a strongly localized defect on spatial distribution
and dynamics of matter waves. We study the existence and
stability of defect modes, concentrating on their approxi-
mate analytical description and on numerical simulation of
their dynamics, establishing the stability properties of the
modes. We show that a defect mode can be driven over
hundreds of lattice periods, thus representing an effective
tool for matter waves management.

In the quasi-one-dimensional (1D) limit a BEC is gov-
erned by the dimensionless Gross-Pitaevskii equation [5]

i t � � xx � A cos�2x� � Vd�x� xd� � �j j2 ;

(1)

where � � 1 (repulsive atom-atom interactions) or � �
�1 (attractive), A is the amplitude of the lattice, the lattice
constant is chosen to be � without restriction of generality
and Vd�x� xd� � ��=

�������
2�
p

‘� exp���x� xd�
2=2‘2�, is a

defect potential of the amplitude characterized by �, width
‘ & � (i.e., localized on a distance of the order of 1 lattice
period) and center xd. This situation can be realized ex-
perimentally by using narrow Gaussian beams for creating
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the defect potential and by adjusting the incidence angles
of the beams generating the OL.

Since the defect is strongly localized we can expand
the solutions over the orthonormal basis of Wannier
functions [9]. To do so we first expand  �x; t� �

P
1
��0�R

dk’�k�x�f��k; t�, over the set of Bloch functions ’�k�x�
solving the eigenvalue problem ��d2=dx2�Acos�2x���
’�k�E��k�’�k, where � � 0; 1; . . . stands for a number
of the Bloch band, k is the wave vector considered on the
first Brillouin zone (BZ), k 2 ��1; 1�, and hereafter inte-
grals with respect to k are over the first BZ. Inserting this
expansion into Eq. (1) we obtain an equation for the
envelope f��k�

i _f��k��E��k�f��k���
Z
dx �’�k�x�j �x;t�j2 �x;t�

�
X
�0

Z
dk0

Z
dx �’�k�x�

�Vd�x�xd�’�0k0 �x�f�0 �k0�: (2)

Hereafter integration with respect to x is carried out over
the real axis and to shorten notations we drop the temporal
argument of the envelope f�.

Next we use the standard definition of Wannier func-
tions:w�n�x�� �1=

���
2
p
�
R
’�k�x�e�i�nkdk and introduce the

matrix element Vnn
0

��0 � �1=2�
R
dxVd�x�w�n�x�w�0n0 �x�

describing probability of transitions between the minimum
n in the band � and minimum n0 in the band �0, as well
as its Fourier transform V̂kk

0

��0 �
P
n;n0V

nn0
��0e

i��k0n0�kn�.
Then, the last term in Eq. (2) is rewritten in the formP
�0
R
dk0V̂kk

0

��0f�0 �k
0�.

Let the defect be localized at the origin, xd � 0, which
also coincides with a minimum of the lattice potential, for
A< 0. Matter-wave modes of small amplitude, having
width � exceeding a lattice period, �	 �, are well de-
scribed in the effective mass approximation [5]. In that
case, the characteristic scale of f��k� in the momentum
space is much smaller than the vector of the reciprocal
lattice which in our case is equal to 2, i.e., �k
 1, the
latter being the scale of variation of V̂kk

0

��0 . In other words, in
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the effective mass approximation the envelope f��k� is
much more localized than V̂kk

0

��0 .
Let us consider localized modes whose carrier-wave

wave vector k0 borders the BZ: k0 � �1. Then the spatial
domain where f��k� significantly differs from zero is given
by k 2 �k0 � �k; k0 ��k� allowing us to approximateR
V̂kk

0

��0f�0 �k
0�dk0 � �V̂��0=2��

R
f�0 �k0�dk0, where V̂��0 �

2�V̂k0k0

��0 . We also take into account that our approxima-
tion is justified when the effective mass, M� �
�d2E��k�=dk2��1, is of order one and the Wannier func-
tions are localized on a few lattice periods. These condi-
tions are verified for OLs of amplitudes of order of a few
recoil energies (in dimensionless units for jAj  1) and
which are illustrated by examples in Table I.

Now the nonlinear term can be rewritten asP
�1;2;3

W��1�2�3
Q�1�2�3

where (see also Ref. [10])

W��1�2�3
�

1

2

X
n1n2n3

��1�n2�n3�n1

�
Z
dxw�0�x�w�1n1

�x�w�2n2
�x�w�3n3

�x�;

Q�1�2��k� �
Z
dk1dk2

�f�1
�k1�f�2

�k2�f��k� k1 � k2�:

(3)

For our lattice potential the Wannier functions have the
symmetry w�n�x� � ��1��w�n��x�. Hence, an even de-
fect Vd�x� results in transitions only between bands having
the same parity, i.e., V̂��0 � 0 if j�� �0j is odd. On the
other hand, the nonlinearity by itself, while it couples
different modes due to (3), does not affect the averaged
densities. Indeed, the total number of particles is given by
N �

R
j j2dx �

P
�n�, where n� �

R
jf��k�j2dk is the

number of particles in the �th band. Interchange of parti-
cles between bands� and �1 originated by the nonlinearity
(3), is determined by the integral Im

R
dk �f��k�Q�1�1��k�,

which in our case is equal to zero.
Assuming that initially all atoms are loaded in one of the

lowest bands we can use the one-band approximation,
which neglects the interband transitions and results in
decoupling of the equations for f��k�, reducing Eq. (2) to
(hereafter V̂� � V̂�� and W��0 � W��0��0)

i _f��k� � E��k�f��k� � V̂�
Z
f��k�dk� �W��Q����k�:
TABLE I. Parameters of the spectrum and hopping integrals
(defined in the text) for k � �1.

A M0 E0 W00 M1 E1 W11 W01

�1 �0:163 0.471 0.25 0.1 1.467 0.174 0.182
�5 �2:5 �2:076 0.358 0.3 2.5 0.234 0.274
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Near the boundary of the BZ we can expand E��k� �
E� � �k� k0�

2=2M� where E� � E��k0� is the energy of
the �th band at the boundary of the BZ (see Fig. 1). Then,
introducing f̂��x; t� � eiE�t

R
dkei�k�k0�xf��k; t� and after

straightforward algebra we obtain the nonlinear
Schrödinger (NLS) equation with a delta impurity

i
@f̂�
@t
�

1

2M�

@2f̂�
@x2 � �W��jf̂�j2f̂� � V̂���x�f̂�: (4)

The wave function  �x; t� is recovered from Eq. (4) by

 ’
1���
2
p e�iE�t

X
n

��1�nw�n�x�f̂��nL�: (5)

Stationary defect modes of (4) have the form: f̂��x� �
e�i"�t���x� with ���x� real. A detailed analysis and clas-
sification of defect modes of the NLS equation can be
found in Ref. [11]. The applicability of the effective
mass approximation and the requirement for the frequency
of the mode to belong to a forbidden gap, imply the
conditions: j"�j 
 E��1 � E� and "�M� < 0 (Fig. 1).

We discuss below defect modes in the first lowest gap
(i.e., for � � 0; 1). For �M� < 0 one obtains cosh modes

���x� �

�����������������������
2j"�j=W��

p
cosh�

�������������������
2jM�"�j

p
�jxj � x���

: (6)

Here x� � a tanh�sign�M�V̂��
�������������
"�="�

p
�=

�������������������
2jM�"�j

p
, and

"� � �M�V̂
2
�=2. This mode exists when j"�j> j"�j. For

M�V̂� < 0 the cosh mode has only one maximum and
otherwise it has a two-hump profile [11].

When �M� > 0 there is another localized solution of
Eq. (4)—a sinh mode—which corresponds to a smaller
detuning j"�j< j"�j such that "��< 0,

���x� �

�����������������������
2j"�j=W��

p
sinh�

�������������������
2jM�"�j

p
�jxj � x���

: (7)

Now x� � a tanh�
�������������
"�="�

p
�=

�������������������
2jM�"�j

p
.

Since w1n are odd functions and the defect potential is
localized on its zero we have that jV̂1j 
 jV̂0j (V̂1 � 0 in
the limit ‘ � 0). Thus f̂0 is subject to much larger influ-
ence of the defect than f̂1. We also notice that since M� �

O�1� one has j"�j  V̂
2
�. On the other hand, the applica-

bility of our approach implies that all the terms in Eq. (4)
FIG. 1. Location of the impurity modes for Vd > 0, Vd < 0.
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are of the same order and that �	 �. Thus j"�j 
jV̂�j=� 1=�2 
 jE�j  1 and V̂� 
 1. Therefore, be-
low we concentrate on cosh modes excited in the vicinity
of the lowest band (� � 0) and with � � 1.

In Fig. 2 we plot both our analytical approximation for
cosh modes given by Eqs. (5) and (6) and direct numerical
solutions of Eq. (1) for different amplitudes of OL and
defect parameters. The figure shows a very good accuracy
of the one-band approximation. We have checked that
decreasing the defect width by a factor of 10 does not
appreciably change the shapes of the defect modes and
their amplitudes differ only by 1%, which confirms the
excellent accuracy obtained from the delta-approximation
for ‘
 �. The analytical approximation becomes worse
for larger values of the defect strength, since in that case
the modes are localized on very few lattice periods, and the
tight-binding approximation should be used instead [10].
The approximation is worse for more complex modes: one-
hump modes are better described in the tight-binding ap-
proximation than the two-hump modes, which is an evi-
dence of the contribution of higher bands.

Two-hump modes display interesting features compared
to their counterparts of the NLS equation, where they can
be excited only in the case of attractive interactions [11].
Because of the possibility of the change of sign of the
effective mass, such modes can also exist in the presence of
the lattice for positive scattering length. Moreover, the
modes have single maxima in their centers [Figs. 2(e)–
2(h)], i.e., the term ‘‘two-hump’’ must be understood
de bene esse. This happens because f̂��x� are envelopes
of Wannier functions.
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FIG. 2. Approximate analytical (thin lines) and
numerical (thick lines) shapes of one-hump (a), (b), (c), (d)
and two-hump (e), (f), (g), (h) cosh modes of the lowest band
for A � �1 (a), (b), (e), (f), and for A � �5 (c),(d),(g),(h) with
‘ � 0:1. Dashed lines show respective potentials (the scale is
indicated on the right axes). Approximate data are computed
using Table I. For A � �5 the defect, having amplitude of order
of 0.1, is not visible.
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In all the cases depicted in Fig. 2 the defect modes are
transformed into the conventional gap solitons in the limit
�! 0, which also follows directly from (6) where "� ! 0
and jx�j ! 0.

To test the stability of cosh modes we have started by
computing their evolution. Although for initial data we
have used the approximate formulas, the shapes of these
modes persist for several hundreds of units of time. Next
we have imposed stronger perturbations by shifting the
position of the defect. First, we shift the defect at t � 10
to the nearest minimum, xd � � and observe how the
mode follows the defect and displaces its center to x �
�. After some relaxation time the profile of the defect
mode centered about x � � is very similar to the initial
one centered about x � 0 [Figs. 3(a) and 3(b)]. However,
when the defect is shifted to xd � �=2, the mode is gradu-
ally destroyed, since the new position does not correspond
to a stable configuration [Figs. 3(c) and 3(d)].

The robust behavior of the mode shown in Fig. 3(a)
suggests that it could be driven by moving the defect.
Meanwhile, the mode is destroyed when it stays close to
the local maxima of the potential. This suggests that the
defect motion should be defined as a steplike function
composed of two characteristic time intervals: a fast one,
�, in which the defect is shifted by one lattice period and a
slow one, T, allowing the cosh mode to recover its shape on
the new site. The mode dynamics shown in Fig. 3(b) can be
interpreted as a tunneling of a part of atoms, between the
two central minima, in a time �0, attracted by the shifted
FIG. 3 (color online). (a), (b) Density plots of the dynamics of
the cosh mode with A � �1, ‘ � 0:1, � � 0:1, and xd � 0. At
t � 10 [dashed vertical lines in (a) and (c)] the defect is shifted
to a position (a) xd � � and (c) xd � �=2 indicated by the
arrows. In (b) and (d) dashed and solid lines correspond to the
initial (t � 0) and final (t � 100) profiles of the density of the
mode. Inset in (d) shows dynamics of the amplitude of the
central peak (solid line) after shifting of the defect: it is fitted
by the law / t�0:38 (dashed line).
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FIG. 4 (color online). [Color online] (a) Pseudocolor and
amplitude plots of the motion of the driven defect mode.
Initial parameters as in Fig. 3. (b) Defect position, xd�t� (thin
line), and average coordinate of the center of the defect mode
hxi�t� (thick line). (c) Evolution of the dispersion D�t�.

FIG. 5. Adiabatic excitation of the cosh mode from a gap
soliton with "0 � 0:01, shown for t � 0 (dashed line) and
t � 103 (solid line). The final values of the parameters are � �
0:1, "� � 0:0034, and "0 � 0:027.
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defect. Since this is a ‘‘single’’ tunneling process and the
intermediate states are unstable the characteristic times
should satisfy �
 �0 
 T.

To estimate the Josephson tunneling time �0 we take into
account that our approximation implies small differences
in populations of neighbor wells and that we are near the
boundary of the BZ, which means that the phase difference
between atoms in adjacent cells is �. Thus we can use the
results of Ref. [12] for the estimation of the half-period of
the oscillations of a BEC in a double-well potential to
obtain �0 � 3:67 for A � �1. Hence, the defect must be
shifted faster than �=�0 � 0:86 and then stop for T 	
3:67 to let the system relax to equilibrium.

Figure 4 shows numerical simulations of the driving of a
defect mode with xd�t� � �

P
j�0	�t� t0 � 100j�, where

	�t� is the Heaviside step function and t0 is a time at which
motion is started. Shown are also the mean dispersion or

the width of the wave packet D �
�����������������������
hx2i � hxi2

p
where

hxni �
R
xnj j2dx=

R
j j2dx [Figs. 4(b) and 4(c)].

In Fig. 4(c) we see that the dispersion of the wave packet
grows in the interval t 2 �200; 600� after which the moving
mode achieves a stationary profile. This reshaping occurs
through the emission of radiation which also contributes to
the appearance of small oscillations of hxi [see Fig. 4(b)] in
this time interval.

A way to excite defect modes in real situations is to
create a gap soliton with energy near the band edge in a
homogeneous OL [4], then by increasing adiabatically the
intensity of the transverse laser bean one could generate
the defect mode. We have simulated this process numeri-
cally (see Fig. 5) starting from an envelope soliton with
06040
energy E0 � "0 and increasing � according to � �
0:1sin2�5 � 10�4�t� (with ‘ � 0:1). The obtained final state
is the cosh mode.

In this Letter we have shown that a BEC in a 1D optical
lattice with an additional localized potential supports stable
defect modes which in certain limits can be described by a
nonlinear Schrödinger equation with a delta impurity. We
have constructed these modes analytically and numerically
and have shown that they can be driven along the lattice by
a defect. Finally, we have shown that defect modes can be
easily excited by adiabatically switching on the defect. Our
results open new possibilities for controlling matter waves
which we hope will stimulate further experiments with
BECs in optical lattices.
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