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BEC-BCS Crossover in ‘‘Magnetized’’ Feshbach-Resonantly Paired Superfluids
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We map out the detuning-magnetization phase diagram for a magnetized (unequal number of atoms in
two pairing hyperfine states) gas of fermionic atoms interacting via an s-wave Feshbach resonance (FR).
The phase diagram is dominated by the coexistence of a magnetized normal gas and a singlet-paired
superfluid with the latter exhibiting a BCS-Bose Einstein condensate crossover with reduced FR detuning.
On the BCS side of strongly overlapping Cooper pairs, a sliver of finite-momentum paired Fulde-Ferrell-
Larkin-Ovchinnikov magnetized phase intervenes between the phase-separated and normal states. In
contrast, for large negative detuning a uniform, polarized superfluid, that is, a coherent mixture of singlet
Bose-Einstein-condensed molecules and fully magnetized single-species Fermi sea, is a stable ground
state.
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FIG. 1 (color online). Detuning, �-population difference,
m=n � �n" � n#�=
�n" � n#� phase diagram (for coupling � � 0:1) in (a) displaying
‘‘normal’’ (N), magnetized superfluid (SFM), FFLO (thick red
line) and SF-N coexistence states, (b) showing the FFLO wave
vector Q��� along the FFLO-N phase boundary, and (c) zoom-in
on the FFLO state, stable only for � > �� ’ 2:2�F. To the right
of the dashed lines in (a) and (c), the SF-N coexistence under-
goes a transition to SF-FFLO coexistence.
Recent experimental realizations of paired superfluidity
in trapped fermionic atoms interacting via a Feshbach
resonance (FR) [1,2] have opened a new chapter of
many-body atomic physics. Almost exclusively, the focus
has been on equal mixtures of two hyperfine states exhib-
iting pseudospin singlet superfluidity that can be tuned
from the momentum-pairing BCS regime of strongly over-
lapping Cooper pairs (for large positive detuning) to the
coordinate-space pairing Bose-Einstein condensate (BEC)
regime of dilute molecules (for negative detuning) [3].

In contrast, s-wave pairing for unequal numbers of
atoms in the two pairing hyperfine states has received
virtually no experimental attention and only some recent
theoretical activity [4–9]. Associating the two pairing
hyperfine states with up (") and down (#) pseudospin �,
the density difference �n � n" � n# is isomorphic to
‘‘magnetization’’ m � �n and the corresponding chemical
potential difference �� � �" ��# to a purely Zeeman
field h � ��=2.

This subject dates back to the works of Fulde and Ferrell
(FF) [10] and Larkin and Ovchinnikov (LO) [11], who
proposed that, in the presence of a Zeeman field, an
s-wave BCS superconductor is unstable to magnetized
pairing at a finite momentum Q � kF" � kF# with kF� the
Fermi wave vector of fermion �. This FFLO state, which
remains elusive in condensed matter systems where it is
obscured by orbital and disorder effects, spontaneously
breaks rotational and translational symmetry and emerges
as a compromise between competing singlet pairing and
Pauli paramagnetism.

Thus atomic fermion gases (where the above deleterious
effects are absent), tuned near an s-wave FR, are promising
ideal systems for a realization of the FFLO and related
finite-magnetization paired states, which can be studied
throughout the full BCS-BEC crossover.

In this Letter, we map out the detuning-magnetization
phase diagram (Fig. 1) of such paired superfluids. We find
that for positive detuning � and arbitrarily small m, the
system phase separates into a magnetized normal gas (N)
06=96(6)=060401(4)$23.00 06040
and a singlet-paired BCS superfluid that exhibits a BCS-
BEC crossover with reduced �. The FFLO state intervenes
in a sliver on the boundary between this coexistence region
and the N state. For large negative detuning, a uniform
magnetized superfluid (SFM), that is, a coherent mixture of
singlet Bose-Einstein-condensed molecules and fully mag-
netized single-species Fermi sea, is a stable ground state.
Our predictions of these states and transitions between
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them are testable via thermodynamics (qualitatively modi-
fied by gapless atomic excitations inside the SFM and
FFLO states), sound propagation (with zeroth sound ve-
locity vanishing at the SFM-N transition), and time-of-
flight imaging (displaying density discontinuity and strik-
ing Bragg peaks associated with the finite-momentum
pairing in the FFLO state).

We now sketch the analysis that led to these results. A
gas of fermionic atoms, âk�, resonantly interacting through
a diatomic (closed-channel) molecule, b̂q, is described by a
two-channel Hamiltonian [3]:
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y
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(magnetization) m � n" � n# (imposed by h). Here, �0 is
the bare FR detuning, g is the FR coupling determining the
resonance width, and the system volume is unity.

For a narrow FR (small g),H can be accurately analyzed
by treating b̂q as a single-momentum [10–13] c-number
mode hb̂qi � bQ�q;Q with corrections small [14] in powers
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a
�����
�F
p

=
���
2
p
�2 � c

�����
�F
p

the
density of states at the Fermi energy �F � k2

F=2m set by the
total atom density n � 4

3 c�
3=2
F . To lowest order in �, stan-

dard Bogoliubov analysis [15] gives the ground-state en-
ergy (@ � 1):

EG � hHi

�

��Q
2
� �0 � 2�

��2
Q

g2 �
X
k

�Ek � "k�

�
X
k


Ek"���Ek"� � Ek#���Ek#��; (2)

where Ek� � Ek � �h� k 
Q=2ma� is the excitation
spectrum for a hyperfine state �, with ‘‘gap’’ �Q � gbQ
and Ek � �"2

k � �2
Q�

1=2, "k �
k2

2ma
���Q2=8ma, and

��x� the Heaviside step function. The corresponding
ground state is of the BCS form, but with pairing limited
to momenta k satisfying Ek� > 0.

The phase diagram is determined by minimizing EG
over Q and �Q at fixed average total density n, population
difference m, and physical detuning � � �0 � g

2P
k1=2�k

(determined by the 2-body scattering amplitude). The
competing ground states are (i) a normal Fermi gas (N)
with �Q � 0, (ii) a ‘‘nonmagnetic’’ fully paired BCS-BEC
superfluid with �Q � 0, Q � 0, and m � 0, (iii) a ‘‘mag-
netized’’ partially paired superfluid (SFM) with �Q � 0,
Q � 0, and m � 0, and (iv) a magnetized, finite-
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momentum paired superfluid (FFLO) with �Q � 0, Q �

0, and m � 0. Anticipating the existence of first-order
transitions, across which m; n are discontinuous, in order
to guarantee a solution everywhere it is essential to also
include phase-separated states where two of above pure
states coexist as a mixture in fractions 1� x and x to be
determined.

The computation of the ground-state energy is simplified
by noting that EG�h� � EG�0� �

R
h
0 m�h

0�dh0, where
EG�0� is the well-studied fully paired h � 0 energy and
m�h� � �@EG=@h is the atom species imbalance number.
We compute EG by first neglecting the FFLO state (i.e.,
Q � 0), which, as we shall show, is stable only for a
narrow window of parameters (see Fig. 1). Then,
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For positive detuning �� �F�1=2, appropriate in the BCS
and throughout most of the crossover regimes, �� � and
the density of states inside EG�0� can be well approximated
by a constant N ���, giving
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For small h� � the species imbalance contribution to EG
is well approximated by
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� �2cosh�1�h=���. For 0< h< �BCS=2,
E�G exhibits a single minimum at a standard (h � 0) BCS
value �BCS � 8e�2�e��

�1���2��=��F��1=2
and a maximum

at � � 0. For a higher Zeeman field �BCS=2< h<
�BCS=

���
2
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, the normal state at � � 0 becomes a local
minimum separated from the h-independent global
minimum at �BCS by a maximum at �Sarma �

�BCS

����������������������������
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[16]. For h > �BCS=

���
2
p

the minimum
at � � 0 lowers below that of the BCS state. For a fixed�,
this predicts a first-order SF-N transition at hc��; ��, with
asymptotic form in the narrow FR limit given by
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where a1;2 � 8e�2=
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2
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; 1 (1202=5e�8=5; 4=5) for �� �=2

(�� �=2). The transition is accompanied by a jump in
atom density from n�S���; �� � 4
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BCS

down to n�N���;hc��
2
3cf���hc�

3=2����hc�3=2����

hc�g�n
�S���;��� 4

g2h2
c
1�����=8�, a jump in species

imbalance from 0 to m � 2N ���hc, as well as other
standard thermodynamic singularities.

In a more experimentally relevant ensemble of fixed
total atom number n � �@EG=@�, for hc1 �

hc���S��n; ��; �� < h < hc2 � hc���N��n; h�; �� neither
SF nor N states can satisfy the atom number constraint
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FIG. 2. Bogoliubov sound speed u in the BEC regime as a
function of species imbalance m for � � �2�F, vanishing at
boundary of the SFM with the SF-N coexistence region.
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while remaining a ground state; ��S;N� are SF and N
chemical potentials at density n, Zeeman field h, and
detuning �, obtained by solving n � n�S;N����S;N�� above.
For a narrow FR, �� 1, we find
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where �F � �BCS��; �F� and h�N���=2; n� is the solution
of n � n�N���=2; h�N��. Hence for hc1 < h< hc2 the gas
phase separates [5] into SF and N rich regions in 1�
x�h; �� and x�h; �� proportions, determined by the atom
number constraint xn�N� � �1� x�n�S� � n. In above
n�S���c; ��> n> n�N���c; �� are the SF and N state den-
sities computed along the critical chemical potential
�c�h; �� determined by Eq. (5) with limiting values
�c�hc1;2; �� � ��S;N��n; ��. The fraction of the N state
admixture is then given by x�h; �� � 
n�S���c; �� � n��

n�S���c; �� � n

�N���c; ���
�1 ranging between 0 and 1 for

hc1 < h< hc2 spanning the coexistence region.
A single-valued relation between the magnetization

(species imbalance) m�h; �� � 2
3 cf
�c�h; �� � h�

3=2 �


�c�h; �� � h�3=2���c � h�g and Zeeman field h in the
normal paramagnetic state allows us to reexpress above
predictions in terms the species imbalance number M �
xm, that is, the quantity (rather than h) that we anticipate to
be kept fixed in atomic gas experiments. As illustrated in
Fig. 1 in a phase diagram expressed in terms ofm � �n the
fully paired SF state is confined to the detuning axis (m �
0) and the boundary between the coexistence region and
the N state is given by mc2�n; �� � m�hc2; ��.

We now turn to the negative detuning (BEC) regime.
Although EG, Eq. (2) and the phase diagram that follows
from it can be accurately computed numerically (Fig. 1),
considerable insight can be gained by analytical analy-
sis. This is particularly simple in the �! 0 limit in
which E�G����2��jbj2��4c=15��h���5=2��h���,
m�h;��� �2c=3��h���3=2��h���, and n � 2jbj2 �m.

For h � 0 and � < 0, this shows that the BCS superfluid
ground state smoothly crosses over to a BEC of closed-
channel molecules, with a finite atom excitation gap�������������������������
�2 � g2jbj2

p
� j�j enforcing atom vacuum and the con-

densate density jbj2 � n=2�O���. The gap equation
@EG=@b � 2��� 2��b � 0 then determines � � �=2,
as in the crossover region, �F�1=2<�<2�F, above. From
the excitation spectrum Ek� it is clear that this ground

state remains stable for 0<h<hm���, with hm������������������������������������
g2n=2���=2�2

p
���=2 determined by E0;"��; hm� � 0.

However, for h > hm, finite species imbalance m �
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�2c=3��h� j�j=2�3=2 develops, depleting the SF conden-
sate jbj2 � n=2� �c=3��h� j�j=2�3=2. The resulting mag-
netized SFM is stable for hm < h < hc2, with
hc2��� � �3n=2c�2=3 � j�j=2 � 22=3�F � �=2 determined
by m�hc2; �=2� � n, giving a smooth extension into the
BEC regime of Eq. (7), computed inside the BCS and
crossover regimes.

For a narrow FR E�G ��; �; �; h� can be accurately com-
puted analytically giving
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0
m�h0�dh0: (8)

Its minimization together with the atom number constraint
fixes � � �=2�O��� and leads to the phase diagram
in Fig. 1. We find [15] that above expressions for hm���
and hc2��� receive only small O��� correction for � <
��1=2�F. Hence in contrast to the BCS side, where the
system undergoes phase separation for an arbitrary small
m � 0, on the BEC side the transition at hm��� is into a
uniform magnetized superfluid (SFM) that persists over a
finite range ofm and is a coherent superposition of a singlet
molecular condensate and fully spin-polarized Fermi gas.
The sequence SF! SFM ! N of continuous transitions
remains unchanged for � < �c � �10:6�F. However, for a
finite � and �c � �10:6�F < �<��1=2�F a secondary
local (N state) minimum develops at � � 0 leading to a
first-order SFM ! N transition at hc1��� � �0:65� <
hc2���, preempting a continuous one at hc2���. For a fixed
atom density n and hc1���< h< hc2��� the gas phase
separates into coexisting SFM and N states.

This hc1��� boundary [equivalent to mc1����m
hc1���;
�=2��0:029nj�=�Fj

3=2] is accurately [to O��2�] located
by the vanishing of the coefficient of �4 in E�G ���, pro-
portional to the effective molecular scattering length
am�h;��� �

���
2
p
�2

@�F�2=64
�������
ma
p

j�j3=2�F�h=j�j�. We then
predict [15] that the Bogoliubov sound velocity u��;m�
vanishes [to O���, followed by a small jump to 0] at the
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first-order SFM-N transition and exhibits a �m1=3 cusp
singularity at the SF-SFM boundary. The full expression
is illustrated in Fig. 2 and given by (with �̂ � �=�F)

u � u0

�������������������
1�m=n

p �����������������������������������������
F
�

1�
25=3

j�̂j

�
m
n

�
2=3
�

vuut ; (9)

with F�x� � 1� 2
�x2 


������������
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������������
x� 1
p

�

and u0 � �2
3=4�=8

���
3
p
��vF

����
�
p

=j�̂j3=4� the sound velocity
at m � 0.

We now turn to the FFLO state. Because Q � 0 pairing
is driven by the mismatch of the up " and # Fermi surfaces,
with Q � kF" � kF#, it is clear that the FFLO state can be
stable only at large positive detuning. Computing E�G for
Q � 0 to leading order in �Q � � (using dimensionless
quantities �̂Q � �Q=�F, �̂ � �=�F ĥ � h=�F, Q̂ �

Q
����
�̂
p

=kF, and "G � EG=c�
5=2
F ), we find
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�̂2
BCS

�
h�̂2

Q

2Q̂
ln
Q̂� ĥ
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(10)

At fixed �, for a given �̂ and ĥ, the ground state is de-
termined by minimizing "G��̂Q; Q̂� over �̂Q (the gap equa-
tion) and Q̂ (equivalent to vanishing of the ground-state
momentum). For � * 2�F we find a first-order SF-FFLO
(preempting SF-N) transition approximately at hc��;��,
Eq. (5). At fixed atom number, for h > hc the gas phase
separates into coexisting SF and FFLO states, approxi-
mately bounded above by hc2���, computed for Q � 0
above. At slightly higher field, hFFLO���, we find that the
FFLO state undergoes a continuous transition (that on
general grounds we expect to be driven first-order by fluc-
tuations) into the N state. Numerical solution of the gap,
number and momentum equations yields hFFLO��� [and
thus mFFLO via Eq. (3), plotted in Fig. 1] that interpolates
between 0:754�F��� for large � (in agreement with FF
[10]) and hc1��; n� for �! ��, with the crossing point
�� � 2�F. This microscopically calculated value of �� > 0
contrasts with the conclusion of Ref. [9], the latter based on
a purely qualitative discussion, that has little quantitative
predictive power, e.g., in determining the precise location
of phases.

In free expansion experiments, the FFLO state, most
easily observed with a trap having a typical size that is
large compared to Q�1, should exhibit a BEC peak (ob-
served by its projection onto the molecular condensate [1])
shifted by @Qt=ma (t expansion time) corresponding to the
finite momentum @Q��� [Fig. 1(b)] of its condensate, and a
(spontaneous) Bragg lattice of peaks in the more-likely
case of multiple-Q pairing [11–13,17]. The anisotropy of
the FFLO pairing should also be reflected in ‘‘noise’’
experiments [18] sensitive to angle dependence of pairing
06040
correlations across the Fermi surface. Our predictions of
gapless atomic excitations in the SFM and FFLO states, as
well as the vanishing of the molecular scattering length am
and of the zeroth sound velocity u at the SFM-N phase
boundary should be observable through Bragg spectros-
copy and reflected in thermodynamics (e.g., heat capacity
that is power law in T). We also expect standard thermo-
dynamic anomalies across phase transitions in Fig. 1(a),
and phase separation accompanied by density discontinu-
ity and local density variation with detuning and atom
imbalance across the coexistence region. Finally, because
a gas trapped in a smooth potential V�r� is well charac-
terized by a local chemical potential ��r� � �� V�r� (the
Thomas-Fermi approximation), our fixed � analysis is di-
rectly experimentally relevant. For negative detuning and
finite species imbalance we predict SF state in the cloud’s
core of radius r0���, with density discontinuity to the outer-
shell N state, with r0��� determined by ��r0� � �c��;m�
[see center inset of Fig. 1(a)]. We expect that this shell
structure should be readily observable, particularly if dif-
ferent hyperfine states and closed and open channels can be
imaged independently. Details of these experimental pre-
dictions will be presented in a forthcoming publication
[15].
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