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By reason of the strongly nonergodic dynamical behavior, universality properties of deterministic fixed-
energy sandpiles are still an open and debated issue. We investigate the one-dimensional model, whose
microscopical dynamics can be solved exactly, and provide a deeper understanding of the origin of the
nonergodicity. By means of exact arguments, we prove the occurrence of orbits of well-defined periods
and their dependence on the conserved energy density. Further statistical estimates of the size of the
attraction’s basins of the different periodic orbits lead to a complete characterization of the activity vs
energy density phase diagram in the limit of large system’s size.
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Sandpile models have been introduced by Bak, Tang,
and Wiesenfeld (BTW) as simple nonequilibrium systems
exhibiting self-organized criticality (SOC), providing a
theoretical framework for the emergence of power laws
in a large number of natural phenomena [1]. More recently,
the occurrence of SOC has been related to the presence of
underlying absorbing state phase transitions (APTs) gov-
erning the critical behavior of the system [2]. The relation-
ship between sandpiles and nonequilibrium APTs is
emphasized by a class of models with locally conserved
dynamics, the fixed-energy sandpiles (FESs) [3]. Finite
size scaling techniques led to the complete characterization
of the universality class for driven-dissipative sandpile
models with stochastic dynamics [4], but failed in deter-
mining the critical properties of the deterministic BTW
model, that have been partially recovered by means of
multiscaling analysis [5]. Stochastic FESs seem to belong
to a different universality class with respect to directed
percolation [3,6–8], while the deterministic BTW dynam-
ics shows very strong nonergodic effects, that cannot be
understood using a purely statistical mechanics approach
[6,9]. In dissipative systems, the nonergodicity of the BTW
rule is related to the group structure of the configuration
space [10], and emerges when the process of grain addition
and dissipation is not completely random [11]. Without
dissipation, the group structure breaks down, but the non-
ergodic behavior is recovered as the result of a self-
sustained activity that eventually enters a periodic orbit.

In this Letter, we report the exact solution of the one-
dimensional deterministic fixed-energy sandpile (1D-
DFES), providing an exhaustive description of the micro-
scopic dynamics and its steady states, and determining the
system’s macroscopic behavior in the limit of large size.
Moreover, our explanation of the microscopic origin for
nonergodicity in BTW FESs elucidates the relation, al-
ready suggested in Ref. [9], with mode-locking phenomena
in nonlinear automata [12].

Let us consider a ring of N sites, each one endowed with
an energy zi, assuming non-negative integer values.
Whenever the energy of a site equals or exceeds the
threshold value zth � 2, the site becomes active and under-
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goes a toppling event; i.e., it loses 2 units of energy, that are
equally redistributed among its 2 neighbors. On the con-
trary, if zi < 2, the site i is stable. The system evolves with
parallel dynamics, therefore the update rule can be written
as follows:

zi�t� 1� � zi�t� � 2��zi�t� � 2��
X

j2Vi

��zj�t� � 2� (1)

for i � 1; 2; . . . ; N, where ��x� � 1 (0) if x � 0 (x < 0)
and Vi is the neighborhood of the site i. When the total
energy E �

P
izi is sufficiently large, periodic boundary

conditions prevent the system from relaxing in the absorb-
ing state (zi < 2 8 i). Since the configuration space is
finite and the dynamics is deterministic, after a transient,
the system enters a periodic orbit (steady active state). We
will conventionally assume sites to have energy between 0
and 3 (relaxing this condition does not modify the physical
properties of the system), initial configurations being any
possible sequence of N symbols randomly chosen in the
alphabet f0; 1; 2; 3g. In addition to the invariance under the
action of the finite group of cyclic permutations and re-
flections on the ring, the system admits another internal
symmetry: the configurations are dynamically equivalent
under the transformation zi ! z0i � 3� zi. This means
that the whole orbit traced starting from a configuration
Z0 � fz0ig is known if we know that traced by the configu-
ration Z � fzig, and the two limit cycles have the same
period. In the mean-field description [3,6], the critical
behavior of the system around the absorbing-active tran-
sition point is deduced studying the activity phase dia-
gram, the plot of the activity � � 1

N

P
i��zi � 2� (the

density of active sites) vs the energy density � � E=N.
The symmetry of the problem allows us to restrict the
analysis of the 1D-DFES to the energy density range � 2
�0; 3=2� (or in � 2 �3=2; 3�).

Numerical results show that large systems converge to
periodic orbits of well-defined periods T in the whole range
of the energy density. Figure 1 reports the diagrams ����
and T��� for a system of size N � 20 and 100 random
initial conditions. To emphasize the nonergodicity, the
3-1 © 2006 The American Physical Society
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FIG. 1. The activity diagram ���� (a) and the behavior of the
period T as a function of the energy density � (b) for a 1D-DFES
of size N � 20. Figures display all results, without averaging,
obtained starting from 100 randomly chosen initial configura-
tions at each energy value.
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results of all runs are displayed, without computing any
average. In particular, for � < 1 the system converges to a
completely frozen configuration (period T � 1) with no
active sites, while in the range 1< � < 2 only orbits of
period T � 2 are observed. As imposed by symmetries,
� > 2 corresponds to fixed-point configurations with all
sites active. At the critical points � � 1; 2, orbits of period
N seem to be statistically dominant for large systems, but
other periods (e.g., T � 1; 2) are observed with lower
frequency.

The reasons for such a particular phase diagram can be
understood exploiting a result obtained in the mathematical
literature, in which BTW sandpiles have been studied on
generic graphs called parallel chip firing games (CFGs)
[13]. When the underlying graph is undirected, with nei-
ther sinks nor sources, the CFG conserves the total energy.
To our knowledge, the only result determining the proper-
ties of the periodic orbits of CFGs has been proved by Bitar
and Goles [14] in the case of trees. Their theorem states
that on a tree the steady states of the BTW dynamics are
fixed points or cycles of period two. If the graph contains
some loops, the theorem does not hold.

Notwithstanding, the method used in Ref. [14] can be
exploited to study the 1D-DFES. Let us consider a system
in a periodic steady state at a time t0, and a temporal
window Pt0 � �t0; t0 � T � 1� that corresponds to the first
period from t0. If the system entered the periodic orbit O at
time tin, the whole temporal support �tin;1� of O will be
indicated with supp�O�. We define si�t� as a binary variable
that assumes value 1 (0) if the site i is active (stable) at the
time t. The sequence of all these binary values forms the
activity vector Si � fsi�t�jt 2 supp�O�g of a site i.
Moreover, a set �t; t� p� 1� 	 supp�O� is a maximal
active set of length p � 1 if si�t� r� � 1 for r �
0; 1; . . . ; p and s�t� 1� � s�t� p� 1� � 0. Similarly, a
set �t; t� q� 1� 	 supp�O� is a maximal stable set of
length q � 1 if s�t� 1� � s�t� q� 1� � 1 and si�t�
r� � 0 for r � 0; 1; . . . ; q. According to Lemma 1 of
Ref. [14], the following statement holds on a generic
graph: if �s� k; s� 	 supp�O� is a maximal active (stable)
set for a site i, then there exists a neighbor j of i such that
�s� k� 1; s� 1� 	 supp�O� is a maximal active (stable)
set for j. We call V (W) the maximum number of consecu-
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tive 1’s (0’s) in all the activity vectors along the period, i.e.,
the length p (q) of the largest maximal active (stable) set
over all sites. The analysis can be restricted to 0<V < T
(0<W < T), the cases V � 0 (W � T) and V � T (W �
0) corresponding to fixed-point configurations in which all
sites are active (stable) [14]. Moreover, because of the
internal symmetry with respect to � � 3=2, W’s properties
in the interval � 2 �0; 3=2� are equivalent to those of V in
the interval � 2 �3=2; 3�. As a consequence, we limit our
study to W and corresponding maximal stable sets in the
energy range � 2 �0; 3=2�. Two cases, W � 1 and W > 1,
should be distinguished.

If W � 1, the activity vectors of all sites in the system
are 2 periodic. Suppose, indeed, that a site i topples at a
time t together with m< 2 of its neighbors: at the follow-
ing time step t� 1 the site i does not topple, but the
remaining 2�m neighbors topple. Thus, having lost 2�
m energy units during the update at time t and gained the
same quantity at the following time step, the value of site i
has period 2. This argument holds for all sites in the
periodic state (W � 1 for all sites), that consequently has
global period T � 2.

In order to study the case W > 1, suppose the largest
maximal stable set �t; t�W � 1� is at a site i0. For the
above Lemma there is a neighbor i1 of i0 whose largest
maximal stable set is �t� 1; t�W � 2�. In turn, site i1 has
a neighbor with largest maximal stable set �t� 2; t�W �
3�. However, W > 1 imposes that i2 � i0, because the
Lemma implies si2�t� 1� � 0 while from the definition
of maximal stable set we need si0�t� 1� � 1. Proceeding
step by step along the ring in the same direction, we reach
the site iN � i0, whose maximal stable set is �t� N; t�
W � N � 1�. The properties of the system in i0 (and in
every other site) at time t� N result in the same as those at
time t; thus we can conclude that during this process, the
system performs one or more periodic cycles and returns in
the starting configuration after exactly N temporal steps. In
other words, for W > 1 (V > 1) the period T divides N.

The rest of this Letter provides a deeper insight into the
structure of the periodic orbits using a simple method that
is sketched in Fig. 2 for W � 2. Suppose that the interval
�t; t�W � 1� of length 0<W <N is the largest maximal
stable set for a site i, then si�t� s� � 0 for s � 0; . . . ; W �
1, but also si�t� 1� � 1 and si�t�W� � 1. In addition,
si�1�t� 1� r� � 0 for r � 0; . . . ; W � 1, with si�1�t�
2� � 1 and si�1�t�W � 1� � 1; and similarly si�1�t�
1� r� � 0 for r � 0; . . . ; W � 1, with si�1�t� � 1 and
si�1�t�W � 1� � 1. These binary values can be drawn
on a spatiotemporal grid as in Fig. 2. In order to determine
the real values assumed by i in the interval �t; t�W � 1�,
we need to discuss separately the casesW � 1,W � 2 and
W > 2.

The case W � 1 is simpler because all maximal stable
sets have length 1, thus si�t� � 0 implies that at least one of
the two neighbors is active. Drawing a spatiotemporal grid
as in Fig. 2, it follows that spatial configurations can be
3-2



FIG. 2 (color online). Graphical sketch of the method used to
find out the structure of periodic configurations. The case W � 2
is considered. Top figure shows the correspondence between the
binary representation of the spatiotemporal dynamics and the
evolution of the real configuration. An example of the procedure
used to recover the real values assumed by a given site during the
period is reported in the bottom series of draws. Site values can
be univocally determined in W � 1 steps. At each step, the value
of the site at a certain time is computed from a number of
constraints on its (spatiotemporal) neighbors.
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composed of all possible combinations of two-site blocks
of the type 20, 21, 30 and 31 (and those with opposite order
02, 12, 03 and 13). Note that the set of all possible
combinations of these blocks completely fills the energy
interval � 2 �1; 2� of 2-periodic orbits; while at the energy
density � � 1 (� � 2), the configurations of the unique
2-periodic orbit are Z20 � f. . . 202020 . . .g and Z02 �
f. . . 020202 . . .g (Z31 � f. . . 313131 . . .g and Z13 �
f. . . 131313 . . .g).

When W > 1 (see Fig. 2), the site i does not topple at
time t�W � 1 but it has to topple at time t�W, after
having received a single energy unit (from the site i� 1) at
time t�W � 1, then zi�t�W � 1� � 1 and, conse-
quently, zi�t�W� � 2. In particular, if W � 2, the sites
i and i� 1 do not topple at time t�W � 2 � t, but i� 1
topples, providing i of the unique unit of energy that we
find at time t�W � 1 � t� 1. Hence, zi�t� � 0, from
which follows that zi�t� 1� � 2.

In the case W > 2, the same arguments show that
zi�t�W � 2� � 1 (none of the neighbors provides any
grain). If we go backward along the maximal comple-
mentary set, a site i assumes value 1 up to a time t� 1,
then zi�t� � 0 (one of its neighbors topples at that time).
In summary, during the time interval �t� 1; t�W� with
W > 1, the site under study assumes a well-determined
sequence of values 2011 . . . 12 with exactly W � 1 values
equal to 1.

Figure 2 shows the existing relation between the values
assumed by a site during these temporal intervals and those
admitted in the spatial arrangement of the corresponding
periodic configurations. If the maximal stable set of length
W for i starts at time t, the uniqueness of the previous
construction allows us to completely determine the spatial
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block fzi�1�t�W�1�zi�t�W�1� . . .zi�W�t�W�1�g
that will be of the form f211 . . . 102g with W�1 sites at
1. Applying a spatiotemporal translation to our construc-
tion, the spatial block fzi�W�t� . . . zi�t�zi�1�t�g �
f211 . . . 102g is determined as well. The remaining struc-
ture of the configuration at time t can be studied with a
similar technique, provided that we erase the spatial block
fzi�W�t� . . . zi�t�g and consider a reduced system composed
of N �W � 1 sites. Since the role of the erased block was
actually only that of transporting an activity ‘‘soliton’’
from the site i�W to the site i� 1, this operation does
not alter the dynamics that maintains a periodic behavior.
After the reduction, the above methods are applied on the
system, with, in principle, a largest maximal stable set of
different length W0 
 W. At the end of this process, the
system (at a time t in the periodic regime) will be decom-
posed in blocks of decreasing length (fromW � 1 to 2) and
structure of the type 211 . . . 0. The only allowed blocks of
length 2 are those of the form 20. The fronts direction of
motion is determined by the initial conditions, but the
dynamics is invariant under spatial reflections. Moreover,
the analysis of maximal active sets for 0<V <N leads to
identical results (in the range 3=2 
 � 
 3) with spatial
blocks of the type 122 . . . 31 (and 13 . . . 221) instead of
211 . . . 02 (and 20 . . . 112). We have proved by construc-
tion that the case W > 1 (V > 1) corresponds exactly to
systems with an energy density � � 1 (� � 2). For all
other values of � , only periods of length 1 and 2 are
allowed. In the region � < 1 (and � > 2) the limit cycles
are fixed-point configurations with all stable (active) sites,
but in the interval 1< � < 2 fixed points are forbidden and
W � 1. Then, in this region the period of the limit cycles is
T � 2, in agreement with Fig. 1. At the critical points � �
1 (� � 2), the knowledge of the dynamics of building
blocks also allows us to compute the exact number of
periodic configuration of period T as a combinatorial
enumeration problem. In particular, the number �all�N�
of configurations belonging to orbits with T > 1 equals the
number of ways a numbered ring of N sites can be filled
with an ordered set of blocks of length k comprised be-
tween 2 and N [15]. The generating function for the
combinations with blocks of length 2 
 k 
 N is Q�z� �
1=�1�

P
2
k
Nz

k�. Hence, �all�N� is obtained as function
of the coefficients of the derivatives in z � 0 of Q�z�; i.e.,
�all�N� �

P
2
k
N

2k
�N�k�!

d�N�k�

dz�N�k�
Q�z � 0� � AN , where

AN � 0 if N is odd and AN � 2 if N is even. The last
term is introduced to compensate for the double counting
(due to the factor 2k) of configurations composed of only
20 blocks. The number �T�N� of configurations of period
T < N is given by the number of different ways of filling
the ring with identical blocks of length and period equal to
T, i.e., �T�N� � �T�T� for 2 
 T < N. Formally,
�N�N� � �all�N� �

P
2
T<N�T�N� (with T divisor of

N). Starting from �2�2� � �all�2� � 2 and �3�3� �
�all�3� � 6, a recursive relation allows us to compute all
the other terms �T�N� (2 
 T 
 N). The explicit compu-
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FIG. 3. In panel (a), the number �T�N� of configurations
belonging to the attraction’s basin of orbits of period T � 1
(crosses), 2 (squares), and N (circles) is plotted as function of N.
The exponential rate of growth is estimated by curve fitting
[dashed line for�1�N� and dot-dashed line for�N�N�]. The inset
shows that the ratio �1�N�=�N�N� decreases with N.
Panel (b) reports the total number ��N� of configurations at � �
1 (or � � 2) as function of the system size N (circles). The fit
(dashed line) shows an exponential growth as ��N� / �N with
� ’ 3:5.
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tation shows that, in the large N limit, the mass of orbits of
period T � N grows faster than that of orbits of periods
T < N.

However, in order to establish which period occurs with
higher frequency at � � 1 (� � 2), the mass of the whole
attraction’s basin of an orbit is necessary, not only the
number of periodic configurations. We have measured
numerically the exact number of configurations in the
basins of attraction of orbits of different periods.
Figure 3(a) shows results up to N � 16. The size �1�N�
of the basin of attraction of the fixed point grows exponen-
tially with a rate �1�N�=�1�N � 1� ’ �1 with �1 ’ 3:25.
A similar growing rate is observed for orbits of period T �
2 (N even), while the other orbits of period T < N present
smaller attractions’ basins. The largest growing rate is that
of orbits of period N, for which �N�N�=�N�N � 1� ’ �N
with �N ’ 3:5. This means that for N � 100 the proba-
bility of observing T � 1 or T � 2 is about 10�4 smaller
than that of observing T � N. The conjecture that
N-periodic orbits have probability 1 in the large N limit
is corroborated by the observation of very similar scaling
laws for �N�N� and the total number ��N� of possible
configurations at energy E � N, whose behavior is dis-
played in Fig. 3(b) (data are computed analytically using
simple combinatorics similar to that used in Ref. [16]).
Consequently, at the critical energies � � 1; 2, with proba-
bility 1, the system enters very long orbits characterized by
a steady current of active solitons transported along the
system. The activity can assume all (rational) values be-
tween 0 and 1=2.

In conclusion, our solution provides the full understand-
ing of the mode-locking phenomena and the sharp activity
transitions observed in the phase diagram of 1D-DFES.
The arguments can be partially extended to higher dimen-
sions, but the analysis is messed up by the complexity of
the solitonic motion. In the case of two dimensional latti-
ces, the present analysis together with symmetry argu-
ments allow us to obtain an approximated picture of the
05800
correct phase diagram [17]. We hope that these results
could also represent a kind of benchmark for the study of
other automata with conserved dynamics, in which spatio-
temporal patterns are governed by the motion of solitonic
fronts.

The author is grateful to M. Casartelli and P. Vivo for
useful comments.
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