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Strong Coupling between Single Photons in Semiconductor Microcavities
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We discuss the observability of strong coupling between single photons in semiconductor microcavities
coupled by a ��2� nonlinearity. We present two schemes and analyze the feasibility of their practical
implementation in three systems: photonic crystal defects, micropillars, and microdisks, fabricated out of
GaAs. We show that, if a weak coherent state is used to enhance the ��2� interaction, the strong coupling
regime between two modes at different frequencies occupied by a single photon is within reach of current
technology. The unstimulated strong coupling of a single photon and a photon pair is very challenging and
will require an improvement in mirocavity quality factors of 2–4 orders of magnitude to be observable.
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The experimental realizations of strong coupling be-
tween a single mode of an optical cavity and a single
atom have made it possible to demonstrate striking pre-
dictions of cavity quantum electrodynamics (QED) [1].
Quantum information science has since provided motiva-
tion for gaining additional control of such strongly and
coherently coupled systems, and quantum dots embedded
in monolithic optical cavities have emerged as a promising
system for the scalable implementation of cavity QED.
Motivated in part by this promise, a large effort has been
put into the fabrication of small high quality monolithic
microcavities [2].

In parallel, a research effort has begun to make use of the
high nonlinearities of semiconductor materials such as
GaAs to perform classical frequency conversion, using
microcavities to enhance the electric field strength and
microstructures to provide the necessary phase-matching
conditions [3]. Recently, this approach was extended to
parametric down-conversion in nonlinear photonic crystals
for the generation of entangled photon pairs [4].

Here we discuss the observability of strong coupling
between single photons in microcavities coupled by an
optical nonlinearity, with an emphasis on the implementa-
tion in realistic structures.

We consider two schemes: The first consists of two
spatially overlapping single-mode cavities (or a doubly
resonant cavity) at frequencies !a and !b such that !a �

2!b, coupled by a ��2� nonlinearity that mediates the
conversion of a photon in cavity a to two photons in cavity
b and vice versa. The second consists of three overlapping
microcavities with frequencies !a;b;c satisfying !a �
!b �!c, with cavity c occupied by a coherent state
j�ic. The effective nonlinearity in this case couples the
conversion of a single photon in cavity a to a single photon
in cavity b and is enhanced by the coherent state in mode c.

The dynamics of the two systems are similar. For the
sake of clarity, we will therefore solve the dynamics of the
two-mode system and then state the corresponding results
for the three-mode system. The Hamiltonian for the two-
mode system is given by:
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Ĥ � @!aâyâ� @!bb̂
yb̂� @��â�b̂y�2 � âyb̂2�; (1)

where ây �â�, b̂y �b̂� represent creation (annihilation) op-
erators for modes a, b and � is the strength of the coupling
between the modes:
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where ��2�ijk�r� is the nonlinear susceptibility tensor, Ea;b�r�
represent the spatial part of cavity modes a, b normalized
so that their maximum value is 1, Va;b represent the mode
volumes defined as in Ref. [5], and we have adopted the
repeated index summation convention.

Restricting our attention to the subspace jai � j1iaj0ib,
jbi � j0iaj2ib, we obtain the following Hamiltonian:
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where � � !a � 2!b is the detuning between the cavities.
This is the well known Hamiltonian for two states jai and
jbi coupled by an interaction @
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haje�i�t� first discussed by Rabi [6]. It is analogous to
the Jaynes-Cummings Hamiltonian for an atomic transi-
tion coupled to a single cavity mode [7], with the role of the
excited atom played by the two photons in mode b, the role
of the cavity photon played by the photon in mode a. The
eigenstates are time-dependent superpositions of the un-
coupled eigenstates jai and jbi, with energies given by:
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Just as in the atom-cavity case, if the system is prepared in
one state, say jai, and � � 0, the time evolution will
consist of Rabi flopping between states jai and jbi at twice
the Rabi frequency 2�R � 2
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2
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�.
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FIG. 1 (color online). Evolution of �11 for initial conditions
�11 � 1, �22 � V � 0. The frequency of the oscillation is
2�R � 2

���
2
p

�, corresponding to a period �R � 2�=�R. The
1=e time of the decay is given by �eff � �1=�a � 1=2�b�

�1.
The strong coupling criterion proposed here consists of requiring
that the revival of the oscillation takes place before the 1=e time
of the decay. Inset: Solid lines: E���� for fixed !a. Dashed
lines: FWHM of E�. The energy splitting at zero detuning
provides a second, weaker criterion for strong coupling.
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In practice, the bare cavities will leak photons. The
possibility of observing an oscillation will depend on the
ratio of the Rabi oscillation period to the cavity decay time.
In the context of atom-cavity systems, if the oscillation is
in principle observable, the system is said to be in the
strong coupling regime. A precise criterion for the discus-
sion of strong coupling in the present system is afforded by
solutions of the following master equation [8]:
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â �̂ ây �

1

2�b
�b̂yb̂ �̂��̂b̂yb̂� �

1

�b
b̂ �̂ b̂y; (5)

where �̂ represents the reduced density matrix for the two
cavities, Ĥint represents the interaction part of the
Hamiltonian of Eq. (1), and the second and third terms
model the loss of photons from cavities a and b. If the
system is prepared in the state j1iaj0ib, the four joint states
of the cavities relevant to the time evolution are j1i �
j1iaj0ib, j2i � j0iaj2ib, j3i � j0iaj1ib, and j4i �
j0iaj0ib. Expressing �̂ in this basis, and writing out the
master equation for each component separately, the follow-
ing closed subset can be found:
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where �ij � hij�jji and V � �12 � �21. The matrix ele-
ments �33 and �44 are determined in turn by _�33 �
2
�b
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1
�b
�33 and _�44 �

1
�a
�11 �

1
�b
�33.

The eigenvalues of the matrix tell us whether the solu-
tions have the character of a damped oscillation or a
critically damped exponential decay. They are given by:
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The time evolution of two of the eigenstates of the ma-
trix will be oscillatory if 2
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, and the 1=e time of the

decay of the oscillation 1=�eff � �1=2�a� � �1=�b�. In the
context of the atom-cavity system, oscillatory behavior is
synonymous with strong coupling. In the present context,
adoption of such a criterion would not be as restrictive as
required for it to be meaningful, since �� has an imaginary
part for �b � 2�a regardless of whether the Rabi period is
at all comparable to the cavity decay time. Note that the
definition in the atomic case is meaningful because the
atomic lifetime is always much longer than the cavity
lifetime, reducing the strong coupling condition to
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2 j1=�aj. We therefore suggest the following criterion for
strong coupling in this system: �eff 
 �R=2 � 2�=2
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illustrated in Fig. 1.

An alternative and somewhat less restrictive criterion
is provided by the resolvability of the energy split-
ting [Eq. (4)]. The width of the split energy levels
[Eq. (4)] at nonzero detuning can be obtained by evaluating
the master equation [Eq. (5)] in the dressed state basis and
taking the Fourier transform of the resulting e��t [8,9]. The
result is �eff

� � ��a=2��0��
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. Figure 1 (inset) shows a plot of the
energy eigenstates as a function of detuning accompanied
by the FWHM of the lines obtained by this approach.
Applying the Rayleigh criterion (separation � FWHM)
for the resolvability of the splitting at zero detuning, we
obtain the following ‘‘spectral’’ strong coupling criterion:
��eff 
 �R=2 � 2�=2

���
2
p

�, illustrated in Fig. 1 (inset).
We now state the results of a similar calculation for the

three-mode system, which is governed by the following
effective Hamiltonian:
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the mean photon number in cavity c. The dynamics in a
similarly chosen subspace: j1i � j1iaj0ib, j2i � j0iaj1ib,
j3i � j0iaj0ib are identical, with the effective decay rate
replaced by �eff � �1=�a � 1=�b�

�1 and
���
2
p

� of Eq. (1)
replaced by j�j�. It is important to note that mode c need
not be a high quality cavity mode; its main purpose is to
enhance the nonlinear interaction between cavities a and b
and provide the missing energy for the conversion. An
5-2



PRL 96, 057405 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
10 FEBRUARY 2006
implementation of mode c could be a weakly confined
laser beam impinging on modes a and b.

We now address the role of phase matching, mode over-
lap, and the tensor nature of ��2�. In conventional
frequency-conversion schemes, the requirement that pho-
tons interacting through a ��2� nonlinearity phase match
can be understood by inspection of the overlap integral for
the fields [Eq. (2), for example]. If the eigenmodes corre-
spond to traveling waves, the E’s will have the form of
complex exponentials in the direction of travel. The over-
lap is then proportional to a sinc function, leading to the
phase-matching requirement �k� 1=L, where L is the
length of the path along which the photons interact. If,
however, as is typically the case in the systems considered
here, the modes take the form of standing waves, the
overlap integral simply takes the form of a spatial overlap
of real field amplitudes. Thus, phase matching does not
play a role in the systems considered here, but in turn the
design of cavities with good overlap becomes of central
importance. The polarization of the modes also has to be
taken into account, since the ��2� interaction is tensorial.
This is done by contracting the electric field vectors with
the ��2� tensor. The effect of this on the value of the overlap
integral depends on the detailed geometry of the system
and on the symmetry group of the nonlinear material. We
will consider, as an example, structures fabricated out of
GaAs which has crystalline structure of the �43m type. This
has the following implications for the values of the com-
ponents of ��2� [10]: ��2�xyz � ��2�xzy � ��2�yxz � ��2�yzx � ��2�zxy �
��2�zyx � j��2�j. This makes it comparatively simple to orient
the GaAs lattice so that the contraction at any one point
does not lead to a reduction in the effective value of the
nonlinearity; for example, in the case of all three polar-
izations being aligned and pointing in the (111) direction,
the value of the contraction of the three polarization unit
vectors with the �43m ��2� tensor is �1:15j��2�j. The value
of j��2�j in GaAs is 200 pm=V at wavelengths of around
1:5 �m [11], 2 orders of magnitude greater than that of
common nonlinear crystals such as 	-barium borate [12].
This high value of the nonlinearity, typical of semiconduc-
tor materials, together with the enhancement in the electric
field per photon afforded by the microcavity is what makes
the proposed schemes viable.

We now turn to a discussion of three systems that could
provide a setting for the schemes discussed above, all of
which have been used recently to study strong coupling
effects between photons and quantum dots [13]; they are
photonic crystal defect microcavities [14], microdisks
[15], and micropillars [16].

Photonic crystal defect microcavities (PCDMC).—
PCDMCs are created by removing unit cells from a pho-
tonic crystal that has a band gap at the relevant frequencies.
They offer an unprecedented ability to control cavity mode
volume, polarization, and frequency. They have been dem-
onstrated in photonic crystals consisting of a two-
dimensional periodic lattice of holes etched in a thin
05740
membrane of GaAs, with confinement in the direction
perpendicular to the plane of periodicity provided by total
internal reflection. Cavities with quality factors (Q) of up
to 18 000 [corresponding to confinement times of ��� �
1 �m� � 9:5 ps] and mode volumes of 0:7��=n�3 have
been demonstrated at a wavelength of 1 �m [17]. In-
and-out coupling can be achieved by integrating wave-
guides within the photonic crystals [18], through an optical
fiber [19], or by free-space optics [17].

The design of PCDMCs with multiple resonances is
challenging but does not seem unrealistic. A good starting
point is the calculation of the band-gap maps of various
defectless lattices, taking into account the finite thickness
of the membrane. This is particularly important, since it
can lead to a strong modification and in some cases even
the closing of higher order band gaps [20,21]. Having
found a pattern that has appropriate band gaps, one has
to seek high quality defect modes by removing one or more
holes. An intuitively interesting class of lattices to pursue
are those with two periodicities built into them, such as
triangular lattices with a multiple atom unit cell, of which
Archimedean lattices [22] are an example. An exciting
possibility is also presented by Penrose tiling based pho-
tonic quasicrystals, in which a single-frequency cavity has
been recently demonstrated [23] and which have been
shown theoretically to support modes at widely differing
resonant frequencies [24].

To estimate how close the strong coupling regime is to
being achievable with current technology, we first consider
the three-mode scheme, estimating the Rabi period and
comparing it to the cavity lifetime as follows: We assume
that a doubly resonant PCDMC can be designed that will
support overlapping modes at frequencies !a and !b with
Q’s similar to those obtained in Ref. [17]. Taking modes a,
b, and c to overlap well, all three polarizations to be the
same (TE) and the growth direction to be (111), we esti-
mate the overlap integral in Eq. (2) to be equal to
1
2 j�

�2�
GaAsjVa. Taking Vc � fcVa, where a realistic range

for fc is 1–100, an average of n photons in mode c and
�b � 1:5 �m, we then obtain an oscillation period �R=2�

5
����������
fc=n

p
ns. The corresponding cavity effective lifetime is

�eff � 4:8 ps. The strong coupling regime is thus within
reach with an average of 106fc photons in mode c. A
similarly constructed estimate in the unseeded case yields
�R=2� 18 ns, 3 orders of magnitude away according to
the spectral criterion.

Micropillars.—Micropillars are microscopic cylinders
etched out of closely spaced Bragg mirrors, with confine-
ment in the radial direction provided by index contrast.
They present clear in-and-out coupling advantages. The
design of a doubly resonant Bragg mirror configuration
which gives good mode overlap has been studied exten-
sively for the case of parallel mirrors [3] and is readily
achievable. A cavity with a Q of 27 700 [��� �
930 nm� � 13:6 ps] and a mode volume of 100��=n�3

wasdemonstrated in Ref. [25] at � � 930. The correspond-
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ing periods are �R=2� 44
����������
fc=n

p
ns and �eff � 8:0 ps. The

strong coupling regime is thus within reach with an aver-
age of 3� 107fc photons in mode c; in the unseeded case
(�R=2� 177 ns), it is 4 orders of magnitude away.

Microdisk resonators.—Microdisk resonators consist of
a thin disk of material, supported by a column. The high-Q
modes correspond to whispering gallery modes that hug
the outside walls of the resonator. Typically, defects in the
microdisks couple counterpropagating modes to create
standing wave modes [26]. Doubly resonant (!=2!) mi-
crodisks have been demonstrated in Ref. [27]. In-and-out
coupling can be achieved by use of a fiber [26]. Q’s of
360 000 [��� � 1:4 �m� � 267:3 ps] have been demon-
strated in GaAs at a wavelengths of 1:4 �m [26], with
a mode volume of 6��=n�3. Making similar assumptions
to those made for the PCDMCs, we obtain �R=2�

37
����������
fc=n

p
ns and �eff � 95 ps. The strong coupling regime

is thus within reach with an average of only 76� 103fc
photons in mode c, whereas in the unseeded case (�R=2�
148 ns), it is only 2 orders of magnitude away.

As a final point, we discuss possible schemes to measure
the strong coupling effects presented here. In the spectral
domain, one could measure the transmission of the cavities
as a function of the detuning between the cavities or as a
function of the coherent state intensity. The latter is much
simpler but can be implemented only in the three-mode
scheme. In the time domain, one could initiate the coupled
system with a photon in one of the modes, for example, by
sending an appropriately shaped pulse into one of the
cavities; one could then wait and measure the photon
emission from cavities a and b as a function of time. A
simpler alternative that works in the three-mode case is to
send a photon into cavity a and then apply a Rabi � pulse
through cavity c to deterministically convert the photon in
mode a to a photon in mode b.

In conclusion, we have discussed the observability of
strong coupling between single photons in semiconductor
microcavities coupled by an optical nonlinearity. We have
shown that, if the process is stimulated by a weak coherent
state, the strong coupling regime is within reach of current
technology. Engineering structures in which the unstimu-
lated process could be observed appears to be a challenging
goal for years to come. The observation of such a coupling
would constitute a new regime for photons in quantum
optical systems. Aside from the design of structures opti-
mized for the implementation of the schemes presented
here, an extension of the present work would be the inves-
tigation of ways to further enhance the nonlinearities by
engineering the material properties, ways to integrate
sources, such as quantum dots, with the present schemes,
and ways to implement quantum logic gates between
strongly coupled single photons.
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