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Anomalous Excitation Spectra of Frustrated Quantum Antiferromagnets
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We use series expansions to study the excitation spectra of spin-1=2 antiferromagnets on anisotropic
triangular lattices. For the isotropic triangular lattice model (TLM), the high-energy spectra show several
anomalous features that differ strongly from linear spin-wave theory (LSWT). Even in the Néel phase, the
deviations from LSWT increase sharply with frustration, leading to rotonlike minima at special wave
vectors. We argue that these results can be interpreted naturally in a spinon language and provide an
explanation for the previously observed anomalous finite-temperature properties of the TLM. In the
coupled-chains limit, quantum renormalizations strongly enhance the one-dimensionality of the spectra,
in agreement with experiments on Cs2CuCl4.
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FIG. 1. Excitation spectrum for the TLM (J1 � J2) along the
path ABCOAQD shown in Fig. 4. The high-energy spectrum is
strongly renormalized downwards compared to the LSWT pre-
diction (solid line). Note the roton minima at B and D and the flat
dispersion in the middle parts of CO and OQ.
One of the central problems in quantum magnetism
is understanding the properties of two-dimensional (2D)
spin-1=2 Heisenberg antiferromagnets (HAFM’s). A
question of particular interest is whether the inter-
play between quantum fluctuations and geometrical frus-
tration can lead to unconventional ground states and/or
excitations. Candidate materials which have recently at-
tracted much attention include Cs2CuCl4 [1] and
�-�BEDT-TTF�2Cu2�CN�3 [2].

If the ground state is magnetically ordered, the system
must have gapless magnon excitations, which at suffi-
ciently low energies are expected to be well described by
semiclassical (i.e., large-S) approaches such as spin-wave
theory (SWT) and the nonlinear sigma model (NLSM).
However, if the magnon dispersion at higher energies
deviates significantly from the semiclassical predictions,
it is possible that the proper description of the excitations,
valid at all energies, is in terms of pairs of S � 1=2
spinons. In this unconventional scenario, the magnon is a
bound state of two spinons, lying below the two-spinon
(particle-hole) continuum.

In this Letter, we use series expansions to calculate the
magnon dispersion of 2D frustrated S � 1=2 HAFM’s. Our
main finding is that for the triangular lattice model (TLM)
the dispersion shows major deviations from linear SWT
(LSWT) at high energies (Fig. 1). We argue that these
deviations can be qualitatively understood in terms of a
two-spinon picture [3], provided the spinon dispersion has
minima at Ki=2, where Ki is a magnetic Bragg vector.
Based on this interpretation of the TLM spectra, we pro-
pose an explanation for the anomalous finite-temperature
behavior found in high-temperature series expansion stud-
ies [4].

Both qualitatively and quantitatively, the deviations
from LSWT found here for the TLM are much more
pronounced than those previously reported [5–8] for the
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high-energy spectra of the square lattice model (SLM). We
point out that the deviations from SWT increase in the Néel
phase, too, upon adding frustration to the SLM. We further
consider the limit of our model relevant to Cs2CuCl4 and
show that the calculated excitation spectra are in good
agreement with experiments [1].

Model.—We consider a S � 1=2 HAFM on an aniso-
tropic triangular lattice, with exchange couplings J1 and J2

[Fig. 2(a)]. This model interpolates among the SLM (J1 �
0), TLM (J1 � J2), and decoupled chains (J2 � 0).
Classically, the model has Néel order for J1 � J2=2 with
q � � and helical order for J1 > J2=2 with q �
arccos��J2=2J1�, where q (2q) is the angle between
1-1 © 2006 The American Physical Society
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FIG. 3. Excitation spectra in the Néel phase. As J1=J2 is
increased, the local roton minimum at ��; 0� becomes more
pronounced, and the energy difference between ��; 0� and
��=2; �=2�, which LSWT predicts to be zero, increases.
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FIG. 2. (a) Exchange constants J1 and J2 for the S � 1=2
HAFM on the anisotropic triangular lattice. The model can
also be viewed as a square lattice with an extra exchange along
one diagonal. (b) Brillouin zone for the frustrated SLM, in
standard square lattice notation (the frustrating J1 bonds are
taken to lie along the �45� directions in real space). The
excitation spectra in Fig. 3 are plotted along the bold path.
Also shown are the locations of the Bragg vectors (solid squares)
and the local roton minima (solid circles) in the S � 1 dispersion
and the global minima of the S � 1=2 spinon dispersion (open
squares) in the Néel phase. Note that the 90� rotation invariance
present for J1 � 0 is lost for J1 > 0.
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nearest-neighbor spins along J2 (J1). The phase diagram
for S � 1=2 was studied in Refs. [9,10].

Series expansion method.—In order to develop series
expansions for the helical phase (see Ref. [9] for expan-
sions for the Néel phase spectra), we assume that the spins
order in the xz plane, with nearest-neighbor angles q and
2q as defined above; q (generally different from the clas-
sical result) is determined by minimizing the ground state
energy. We now rotate all the spins, so as to make the
ordered state ferromagnetic, and introduce an anisotropy
parameter in the Hamiltonian H��� � H0 � �V, so that
H�0� is a ferromagnetic Ising model and H�1� is the spin-
rotation invariant Heisenberg model [9]. We use linked-
cluster methods to develop series expansions in powers of
� for ground state properties and the triplet excitation
spectra. The calculation of the spectra is particularly chal-
lenging as Sz is not conserved. Because of single-spin flip
terms in V, the one-magnon state and the ground state
belong to the same sector, and the linked-cluster expansion
with the traditional similarity transformation [11] fails. To
get a successful linked-cluster expansion, one has to use a
multiblock orthogonality transformation [12]. We have
computed the series for ground state properties to order
�11 and for the spectra to order �9 for J1 � J2 and to order
�8 otherwise. The properties for � � 1, discussed in the
following, are obtained from standard series extrapolation
methods.

Square lattice model.—Several numerical studies [5–8]
have reported deviations from SWT for high-energy ex-
citations in the SLM. While 1st order SWT (i.e., LSWT)
and 2nd order SWT predict no dispersion along ��� x; x�,
3rd order SWT finds a weak dispersion, with the energy at
��; 0� �2% lower than at ��=2; �=2� [8,13,14]. In contrast,
the most recent quantum Monte Carlo (QMC) [7] and
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series expansion [8] studies find the energy at ��; 0� to be
�9% lower. These deviations from SWT have been inter-
preted [6,15,16] in terms of a resonating valence-bond
(RVB) picture, in which the ground state is described as
a �-flux phase [17] modified by correlations producing
long-range Néel order [15], and the Goldstone modes
(magnons) are bound states of a particle and a hole spinon
[15,16]. The magnon dispersion, calculated using a random
phase approximation (RPA), has local minima at ��; 0�
[15,16] (in qualitative agreement with the series or QMC
results), the locations of which are intimately related to the
fact that the spinon dispersion has minima at ��=2; �=2�
[15,17].

Frustrated square lattice model.—The Néel phase per-
sists up to J1=J2 � �J1=J2�c * 0:7, after which the system
enters a dimerized phase [9]. As the frustration J1=J2 is
increased towards �J1=J2�c, the local minimum at ��; 0�
becomes more pronounced (see Fig. 3); for J1=J2 � 0:7,
the energy difference between ��=2; �=2� and ��; 0� has
increased to �31%. In contrast, LSWT predicts no energy
difference [18]. These results lend further support to the
RVB/flux-phase picture. The locations of the Bragg vec-
tors, roton minima, and spinon minima in the Néel phase
are shown in Fig. 2(b).

Triangular lattice model.—Next, we consider the TLM
(J1 � J2), whose ground state has 120� ordering between
neighboring spins [19]. Figure 1 shows the excitation
spectrum plotted along the path ABCOQD in Fig. 4.
While the low-energy spectrum near the (magnetic)
Bragg vectors looks conventional, the high-energy part of
the excitation spectrum shows several anomalous features
which both qualitatively and quantitatively differ strongly
from LSWT: (i) At high energies, the spectrum is renor-
1-2
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FIG. 4. Brillouin zone diagram for the TLM. Bragg vectors
(solid squares), local roton minima (solid circles), and midpoints
of flat dispersion regions (stars) for the spin-1 dispersion are
shown, as well as the global minima of the proposed S � 1=2
spinon dispersion (open squares). Note that the latter two sets of
wave vectors coincide. The excitation spectra in Figs. 1 and 5 are
plotted along the path ABCOAD.
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malized downwards with respect to LSWT. (ii) The exci-
tation spectrum is very flat in the region halfway between
the origin and a Bragg vector, with the midpoint renor-
malized downwards with respect to LSWT by �40%.
(iii) There are local, rotonlike, minima at the midpoints
of the Brillouin zone edges, whose energy is �44% lower
than the LSWT prediction. These strong downward re-
normalizations for the TLM should be contrasted with
the SLM, for which quantum fluctuations always renor-
malize the LSWT spectrum upwards and by amounts never
exceeding 20%.

Two-spinon interpretation.—We will argue that these
results for the TLM are suggestive of spinons in the model.
Our basic hypothesis is that an ‘‘uncorrelated’’ RPA-like
calculation for the TLM, analogous to that discussed in
Ref. [20] for the SLM, should produce a spectrum similar
to the LSWT result, but it will be modified by correlations
[21]. In particular, repulsion from the two-spinon (particle-
hole) continuum can lower the magnon energy, especially
at wave vectors where this continuum has minima. These
minima should occur at �Ki �Kj�=2 corresponding to the
creation of minimum-energy particle-hole excitations with
particle and hole wave vectors Ki=2 and Kj=2, respec-
tively, the locations of which are shown in Fig. 4 (the Ki
are magnetic Bragg vectors). This equals (see Fig. 4) a
‘‘roton’’ wave vector, when Ki and Kj differ by a 2�=3
rotation around the origin, and a wave vector at a spinon
minimum, if Ki and Kj differ by a �=3 rotation. Figure 1
shows that, at both types of wave vectors, the excitation
spectrum is strongly renormalized downwards with respect
to the LSWT. At the former (latter) type of wave vector, the
LSWT dispersion is flat (peaked), which upon renormal-
ization leads to a dip (flat region) in the true spectrum.
Thus, we attribute these deviations to the existence of a
two-spinon continuum.
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For the SLM, the spectral weight of the magnon peak at
��; 0� is considerably smaller than at ��=2; �=2� (60% vs
85%) [7], and the magnon energy deviates much more
from SWT at ��; 0� than at ��=2; �=2�. This suggests quite
generally that the relative weight of the magnon peak
decreases with increasing deviation between the true mag-
non energy and the LSWT prediction. Therefore, one
might expect the contribution of the two-spinon continuum
to be considerably larger for the TLM than for the SLM.

As for the spinons proposed for the SLM [15–17], the
locations of the minima in the spinon dispersion reflect a
d-wave character of the underlying RVB pairing correla-
tions. A d-wave RVB state of this type, but without long-
range order, was discussed for the TLM in Ref. [22]. Its
energy was, however, notably higher than that of the
ordered ground state, and attempts to modify this RVB
state to incorporate long-range order were not successful.
A mean-field RVB state for the TLM with bosonic spinons,
whose dispersion has minima close to Ki=2, was consid-
ered in Refs. [23,24], again without long-range order. In
light of our spinon hypothesis for the TLM, it would
clearly be of interest to revisit these problems.

Explanation of finite-temperature anomalies.—The ex-
istence of roton minima and their description in terms of
pairs of spinons provide a possible explanation for the
sharply different temperature dependent properties of the
SLM and TLM. For the SLM, the temperature dependence
of the correlation length is consistent with a NLSM de-
scription in the renormalized classical (RC) regime over a
considerable temperature range [25]. Even though the
ground state moment and spin stiffness are comparable in
the two models, for the TLM the correlation length was
found to be orders of magnitude smaller at T � J=4 with a
spin stiffness decreasing with decreasing temperature (and
longer length scales) [4], inconsistent with the NLSM
description in the RC regime [26]. We suggest that these
differences are due to the fact that (see Figs. 1 and 3) the
spinon gap Es (which is half the roton energy) is 4 times
smaller for the TLM than for the SLM (0:28J versus 1:1J).
Substantial thermal excitation of spinons for temperatures
comparable to Es will make a significant contribution to
the entropy and reduce the spin stiffness. Following an
argument by Ng [27], we expect that thermal excitation
of spinons will cause a NLSM description to break down
when T � Es. The results of the high-temperature expan-
sions for both models are consistent with this estimate [4].
J1=J2 � 3 and Cs2CuCl4.—The ratio J1=J2 � 3, closer

to the decoupled chains limit, is relevant for Cs2CuCl4,
which has an extremely rich excitation spectrum [1] with
well-defined spin waves at low energies below the Néel
temperature TN , and a continuum, strongly reminiscent of
the two-spinon continuum in one-dimensional (1D) anti-
ferromagnets, which persists well above TN . Compared to
LSWT, the series dispersion (Fig. 5) is enhanced by�53%
along the chains (close to the value for 1D chains) and
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FIG. 5 (color online). Excitation spectrum for J1=J2 � 3 (solid
points from series) along the path ABCOAD in Fig. 4, compared
to experimental dispersion in Cs2CuCl4 (squares from Ref. [1];
dashed line is the experimental fit), where the exchange ratio is
similar, J2=J1 � 0:34�3� and J2 � 0:128�5� meV. Compared to
LSWT for J1=J2 � 3 (solid line), these spectra are enhanced
along the J1 bonds and decreased perpendicular to them.
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reduced by�50% perpendicular to the chains. [In contrast,
higher order SWT [28] gives only weak enhancement
(�13%) over LSWT along the chains.] Thus, quantum
fluctuations make the system appear much more 1D.
Overall, the series dispersion agrees well with the experi-
mental dispersion for Cs2CuCl4, also shown in Fig. 5,
whose enhancement and reduction factors (derived using
a slightly different J1=J2 ratio; see caption) are �63% and
�17%. The large difference between the theoretical and
experimental reduction factors perpendicular to the chains
may be due to the Dzyaloshinski-Moriya interaction in
Cs2CuCl4 (not included in the series calculations), which
may make the system less 1D (it has the same path as J2

and a coupling constant �0:15J2) [28].
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[6] O. F. Syljuåsen and H. M. Rønnow, J. Phys. Condens.
Matter 12, L405 (2000).

[7] A. W. Sandvik and R. R. P. Singh, Phys. Rev. Lett. 86,
528 (2001).

[8] W. Zheng et al., Phys. Rev. B 71, 184440 (2005).
[9] Z. Weihong et al., Phys. Rev. B 59, 14 367 (1999).

[10] C. H. Chung et al., J. Phys. Condens. Matter 13, 5159
(2001).

[11] M. P. Gelfand, Solid State Commun. 98, 11 (1996).
[12] W. Zheng et al., Phys. Rev. B 63, 144410 (2001).
[13] Z. Weihong and C. J. Hamer, Phys. Rev. B 47, 7961

(1993).
[14] J. Igarashi and T. Nagao, Phys. Rev. B 72, 014403 (2005).
[15] T. C. Hsu, Phys. Rev. B 41, 11 379 (1990).
[16] C. M. Ho et al., Phys. Rev. Lett. 86, 1626 (2001).
[17] I. Affleck and J. B. Marston, Phys. Rev. B 37, R3774

(1988).
[18] J. Merino et al., J. Phys. Condens. Matter 11, 2965 (1999).
[19] B. Bernu et al., Phys. Rev. B 50, 10 048 (1994); R. R. P.

Singh and D. A. Huse, Phys. Rev. Lett. 68, 1766 (1992);
D. J. J. Farnell et al., Phys. Rev. B 63, 220402(R) (2001);
L. Capriotti et al., Phys. Rev. Lett. 82, 3899 (1999).

[20] J. R. Schrieffer et al., Phys. Rev. B 39, 11 663 (1989).
[21] See also discussions of Eq. (2.44) and Fig. 2 in Ref. [15].
[22] T. K. Lee and S. Feng, Phys. Rev. B 41, 11 110 (1990).
[23] D. Yoshioka and J. Miyazaki, J. Phys. Soc. Jpn. 60,

614 (1991).
[24] K. Lefmann and P. Hedegård, Phys. Rev. B 50, 1074
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