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Spin Hall Effect in Doped Semiconductor Structures
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In this Letter we present a microscopic theory of the extrinsic spin Hall effect based on the
diagrammatic perturbation theory. Side-jump and skew-scattering contributions are explicitly taken
into account to calculate the spin Hall conductivity, and we show that their effects scale as �SJ

xy=�
SS
xy �

�@=��="F, with � being the transport relaxation time. Motivated by recent experimental work we apply our
theory to n- and p-doped 3D and 2D GaAs structures, obtaining �s=�c � 10�3–10�4, where �s�c� is the
spin Hall (charge) conductivity, which is in reasonable agreement with the recent experimental results of
Kato et al. [Science 306, 1910 (2004)] in n-doped 3D GaAs system.
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The spin Hall effect (SHE) is an intriguing phenomenon,
theoretically predicted [1,2] in 1971, where the application
of a longitudinal electric field creates a transverse motion
of spins, with the spin-up and spin-down carriers trans-
versing in perpendicular directions with respect to the
electric field opposite to each other, leading to a transverse
spin current and presumably to spin accumulation at the
edges of a bulk sample. There have been enormous recent
interest and activity in this topic due to a number of
reasons: (1) the emergence of the subject of ‘‘spintronics’’
[3] where active control and manipulation of spin dynam-
ics in electronic materials leads to conceptually new func-
tionalities and projected novel device applications; (2) the
rediscovery [4] of the original prediction of SHE, and the
theoretical prediction and controversy [5–7] surrounding a
new type of SHE, called the ‘‘intrinsic’’ SHE [5]; and
(3) recent reports of the experimental observation [8–10]
of SHE in n- and p-doped semiconductor structures by two
experimental groups. The fact that the two experimental
groups report SHE observations differing by orders of
magnitude in strength coupled with claims and counter-
claims on whether the experimentally observed effects are
the original (in this context referred to as ‘‘extrinsic’’) SHE
[1,2] or the new intrinsic [5] SHE has made the subject of
SHE one of the most intensively studied current topics in
electronic solid state physics. The theory of SHE is in
flux—although the original extrinsic SHE (arising from
the spin-orbit coupling effect in impurity scattering) is on
fairly firm conceptual ground, its magnitude has often been
claimed to be minuscule (and far too weak to be of any
experimental consequence), whereas the very existence of
the intrinsic SHE (which arises from the intrinsic spin-orbit
coupling effects in the band structure) has often been
questioned. Therefore, taking the most pessimistic (opti-
mistic) view of the theoretical literature an impartial ob-
server could reasonably conclude that the SHE is
essentially zero (very large in magnitude) always (often).

It is therefore quite important to provide not just general
theoretical frameworks but concrete theoretical calcula-
tions relating to the specific experimental SHE measure-
ments. In this Letter we provide one such concrete cal-
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culation [11] for the recent experimental measurements
[8–10] using entirely the extrinsic SHE perspective, com-
pletely ignoring any intrinsic SHE considerations [12]. The
fact that we get reasonable qualitative agreement with the
experimental SHE data from one group [8,9], but not the
other [10], is significant in the context of the continuing
debate and controversy in the SHE. In particular, our
results support the claim [8,9] that the observed SHE in
n-doped GaAs is the extrinsic and not the intrinsic SHE. In
Ref. [13] the extrinsic SHE is treated in metallic systems.
We also emphasize that the extrinsic SHE is always present
in a doped semiconductor structure (since it arises from
impurity scattering) although its magnitude can be small
[12] depending on the strength of the spin-orbit coupling.

In this Letter we confine ourselves to the extrinsic spin
Hall effect, which arises from the effects of impurity
scattering [1,2]. Drawing similarity with the well-studied
anomalous Hall effect [14], we calculate the spin Hall
conductivity using diagrammatic perturbation theory. In
particular, we derive general expressions for the side-
jump and the skew-scattering contributions using the
Kubo-Greenwood formula, and then apply the theory,
within simplified model approximations, to 3D and 2D
doped semiconductor systems obtaining simple analytical
formulas for the magnitude of the extrinsic SHE. In two
dimensions, we find the spin Hall conductivity to be for-
mally equivalent to the corresponding anomalous Hall
conductivity.

The single-particle Hamiltonian, H � H0 �HSO � V,
in the presence of spin-orbit (SO) scattering due to impu-
rities is

H �
jp� eA=cj2

2m
�
�2

0

4
��� rV�r�	 
 p� V�r�; (1)

where m is the carrier effective mass, �0 is a length
characterizing the strength of SO interaction, A is the
vector potential, and all other notations are standard. We
note that the SO coupling strength parameter �0 is greatly
enhanced in the solid state GaAs environment over its free-
electron vacuum value of @=mec, the Compton wavelength.
This could be construed as a band-structure-induced renor-
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FIG. 1. Diagrams for the side-jump contribution. The vertex
correction for the spin current Eq. (7) is denoted by a solid circle
connected to a dashed line on the left-side vertex; and the vertex
correction for the charge current Eq. (8) by a solid square
connected to a dashed line on the right-side vertex. The solid
circle or square without a connecting dashed line implies a bare
vertex.
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malization of the effective Compton wavelength (just as
the effective mass and the background lattice dielectric
constant are modified) in the semiconductor environment.
In GaAs this renormalization of the Compton length over
its vacuum value is by as much as a factor of 103 (or
larger), reflecting the much stronger (by 106) SO coupling
in semiconductors over the corresponding vacuum effect.
This leads to a much more enhanced extrinsic SHE in
GaAs than the corresponding vacuum estimate. The inclu-
sion of this band structure effect in the SO coupling is the
key to understanding the extrinsic SHE in recent experi-
ments [8,9], as has also been emphasized recently by Engel
et al. [11] in the context of a Boltzmann theory calculation.

We model the impurity scattering potential V�r� as a
short-range white noise disorder with hV�r1�V�r2�i �
niv2

0��r1 � r2� and hV�r1�V�r2�V�r3�i � niv
3
0��r1 �

r2���r2 � r3�. Notice that the third order moment of V
is required since the skew-scattering effect shows up only
in the third order of the impurity potential. Here ni is
the impurity density, and v0 is the Fourier component of
V�r� at q � 0, which is related to the scattering amplitude
f��� as

v0 �
Z
d3rV�r� � ��4�@2=m�f�� � 0�: (2)

The extrinsic spin Hall effect results from the SO coupling
in two ways: the antisymmetry of the matrix element
hkjHSOjk

0i with respect to interchanging k and k0 gives
rise to the skew scattering, while the noncommutativity of
r and HSO, which results in an extra term—the anomalous
current, gives rise to the side jump leading to a renormal-
ization of the current vertex. This is similar to the anoma-
lous Hall effect (AHE) since the same physics underlies
both AHE and SHE.

In the following, we proceed to calculate the vertex
correction of the spin current (i.e., the side-jump contribu-
tion). The spin current js � �ef�z; ug=4 is calculated as

j s � �e
�

1

2m

�
p�

e
c
A

�
�z �

�2
0

8
ẑ� rV�r�

�
; (3)

where u � �i=@��H; r	 is the velocity. Here, following
standard practice, we have multiplied the conventional
definition of the spin current by the electronic charge �e
(where e > 0) so that it has the same units and dimensions
as the charge current. Notice that the second term in Eq. (3)
is the ‘‘anomalous’’ contribution to the spin current.

Expressing all quantities from now on in the momentum
representation the Hamiltonian in the second quantized
form, H �

R
d3r y�r�H �r�, can be written as (we use

the same notation H to express the Hamiltonian in the first
and the second quantized notations)

H �
X
kk0
 yk

�
1

2m

��������@k� ecA
��������

2
�kk0

� Vk�k0
�

1�
i�2

0

4
�k� k0� 
 �

��
 k0 ; (4)
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from which the SO vertex correction to the Green function
is identified as

hkj�HSOjk
0i � ��i�2

0=4��k� k0� 
 �: (5)

The spin current in second quantized form, Js �R
d3r y�r�js �r�, is

J s ��e
X
kk0
 yk

�
@k

2m
�z�kk0 �

i�2
0

8
Vk�k0 �ẑ��k� k

0�	

�
 k0 ;

(6)

from which the SO vertex renormalization for the spin
current can be identified as

�js;l � �ie�
2
0=8��lmz�k

0
m � km�Vk�k0 : (7)

The charge current vertex renormalization can also be
obtained as

�jc;l � �ie�
2
0=4��lmn�k

0
m � km��nVk�k0 : (8)

From the Kubo-Greenwood formula, the spin Hall con-
ductivity can be calculated from the spin current-charge
current correlation function, which can be represented
schematically as a bubble diagram with one spin current
vertex and one charge current vertex (Fig. 1).

The retarded and advanced bare Green functions (i.e.,
without the SO scattering potential) at zero frequency are
diagonal matrices with the diagonal elements GR;A

k"";## �

�"F";# � "";#�k� � i@=2�";#	
�1, where "; # signifies spin-up

and spin-down species, "F";# their Fermi levels, "";# �
@

2k2
";#=2m the corresponding kinetic energies. �";# are the

relaxation times for spin-up and spin-down carriers in the
first-order Born approximation given analytically for our
short-range scattering as �";# � @=2�N";#niv2

0, with N";# the
density of states of the spin-up and spin-down carriers at
their respective Fermi levels. Now taking into account of
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the vertex renormalizations of both spin and charge cur-
rents (Fig. 1), we find the side-jump contribution as

�SJ
xy �

ie2�2
0

8�m
niv2

0 tr
X
k1k2

�k2
1yG

R
k1
GA
k1
�GR

k2
�GA

k2
�	: (9)

The skew-scattering contribution can be obtained by keep-
ing up to third order in the scattering potential (Fig. 2).
Summing both diagrams in Fig. 2, we obtain

�SS
xy � �

ie2
@

2�2
0

16�m2 niv
3
0 tr

X
k1k2k3

�k2
1xG

R
k1
GA
k1
k2

2yG
R
k2
GA
k2

� �GR
k3
�GA

k3
�	: (10)

Evaluating the integral in Eqs. (9) and (10) for the cases of
three dimensions and two dimensions gives

�SJ
xy �

�
e2
@=12m
e2
@=8m

�
�2

0�k
2
F"N" � k

2
F#N#�:

�3D�
�2D�

(11)

�SS
xy �

�
�e2

@
2=36m2

�e2
@

2=16m2

�
�2

0v0fk
4
F"N

2
" �" � k

4
F#N

2
# �#g:

�3D�
�2D�

(12)

In spin Hall effect, one observes the deflection of opposite
spins from an unpolarized electron beam, so we set n" �
n# � n=2. Here the density of states per spin is N";# �
mkF=2�2

@
2 for three dimensions and m=2�@2 for two

dimensions. Equations (11) and (12) are our important
extrinsic SHE results for 2D and 3D semiconductor struc-
tures within the short-range impurity scattering model. We
believe that these analytic formulas would approximately
apply even when the impurity scattering is not strictly zero
range, e.g., for screened ionized scattering. Assuming the
dominant impurities in the semiconductor to be randomly
distributed screened ionized impurity centers, we can fur-
ther simplify our SHE formulas for 2D and 3D doped
semiconductor systems. In the first-order Born approxima-
tion, the scattering amplitude of the screened Coulomb
potential (assuming Thomas-Fermi screening) is f��� �
�2me2=@2�m��q2 � q2

TF�
�1 in three dimensions, and

f��� � �me2=@2�m��q� qTF�
�1 in two dimensions, where

�m is the dielectric constant of the material and q �
2k sin��=2� is the momentum transfer. The Thomas-

Fermi screening wave number is given by qTF ����������������������������
6�ne2=�m"F

p
for three dimensions and qTF �

2�ne2=�m"F for two dimensions. Using these formulas
for the cases of two dimensions and three dimensions, it is
k3
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FIG. 2. Diagrams for the skew-scattering contribution. The
correction to the Green function Eq. (5) is denoted by a cross.
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then straightforward to calculate the extrinsic SHE contri-
butions using Eqs. (11) and (12) within this simplifying
approximation scheme. Accordingly, the side-jump contri-
bution is found to be

�SJ
xy � �e

2�2
0=4@�n; (13)

for both 3D and 2D cases, whereas for skew scattering we
find

�SS
xy �

�
��m�2

0"F=3@2

��m�2
0"F=2@2

�
ne2�
m

:
�3D�
�2D�

(14)

We note that the side-jump and the skew-scattering con-
tributions scale as �SJ

xy=�
SS
xy � �@=��="F. Typically, ��

10�13–10�12 s, so the side-jump contribution is approxi-
mately comparable to the skew-scattering contribution
when the Fermi energy "F � 1–10 meV.

Some order-of-magnitude estimates from Eqs. (13) and
(14) are in order. We choose �0 � 4:7� 10�8 cm (which
is a factor of 103 enhancement over the vacuum electron
Compton wavelength of 3:9� 10�11 cm) in n-GaAs con-
sistent with the expected electronic spin-orbit coupling
strength in GaAs [15], which is thus enhanced by 6 orders
of magnitude over the corresponding Thomas term in the
free-electron vacuum case. For three dimensions, we em-
ploy the parameters from the experiment of Kato et al.
[8,9], where the electron density is n � 3� 1016 cm�3

and the longitudinal conductivity �xx ’ 3�
103 ��1 m�1. For two dimensions, we take n �
1011 cm�2 and �xx � 10�4 ��1. In the following, we
invert the sign of our calculated values of the spin Hall
conductivity for comparison with experimental results
where e instead of �e [8] is used in the definition of the
spin current Eq. (3). We then get for three dimensions
�SJ
xy � �0:375 ��1 m�1 and �SS

xy � 2:97 ��1 m�1;
whereas for two dimensions �SJ

xy � �1:25�
10�8 ��1 m�1 and �SS

xy � 10�7 ��1 m�1. This gives,
for three dimensions and two dimensions, respectively,
the spin Hall conductivity as 2:6 ��1 m�1 and 8:8�
10�8 ��1; and the ratios of the spin Hall conductivity
�SH
xy to the longitudinal conductivity �xx as 8:65� 10�4

and 8:75� 10�4. The experimental SHE quoted in Ref. [8]
is about 0:7 ��1 m�1, which is a factor of�4 smaller than
our estimate. Here we content ourselves with this order-of-
magnitude agreement; a more detailed comparison of any
theoretically calculated value with the existing experimen-
tal values [8] of the spin Hall conductivity should not be
taken too seriously, for the spin Hall conductivity was not a
directly measured but instead an estimated quantity based
on fitting the measured spin accumulation data with a
simple assumed spin density profile. We also emphasize
our results are only approximate given that the real impu-
rity potential of the scattering centers is not strictly zero
range. In addition, we note the crucial point that our
calculated SHE is directly proportional to the SO coupling
strength �2

0, which is only approximately known in
GaAs—any inaccuracy in the knowledge [16] of the pre-
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cise SO coupling is directly reflected in our estimate of the
extrinsic SHE. We also point out that the net SHE in our
theory is a sum of a positive (side-jump) and a negative
(skew-scattering) contribution, further leading to the pos-
sibility of quantitative errors. However, the order-of-
magnitude agreement of the ratio �SH

xy =�xx between our
calculated result and the experiment [8] suggests that the
measured effect is indeed extrinsic [12].

Now we briefly extend our discussion to the case of 2D
holes using the experimental parameters from the experi-
ment of Wunderlich et al. [10], where the hole density is
p � 2� 1012 cm�2 and longitudinal conductivity �xx ’
1:09� 10�3 ��1. We obtain, assuming the same spin-
orbit coupling strength �0 as in the electron case, �SJ

xy �

�1:55� 10�8 ��1 and �SS
xy � 1:36� 10�6 ��1, giving

the total spin Hall conductivity 1:34� 10�6 ��1 and its
ratio to the longitudinal conductivity as 1:23� 10�3. This
is an order of magnitude lower than the intrinsic value
estimated in Ref. [10]. We note, however, that the SO
coupling strength parameter for holes is expected to be
larger than that for electrons, and therefore the possibility
(at least as a matter of principle) that the 2D hole experi-
ment in Ref. [10] is also a measurement of the extrinsic
SHE cannot be completely ruled out.

We finally discuss the formal connection between the
spin Hall effect and the anomalous Hall effect. First, the
side-jump contribution of the anomalous Hall conductivity
~�AH
xy for both three dimensions and two dimensions can

formally be expressed as ~�SJ
xy � �e2�2

0=2@�s, where s �
n" � n# is the spin density. Except for the appearance of
s instead of n, this formula is very similar to that for the
spin Hall effect, Eq. (13). The skew-scattering contribution
can be written as ~�SS

xy � ���m�
2
0"F=@

2��2se2�eff=3m� in
three dimensions and ���m�2

0"F=@
2��se2�=m� in two di-

mensions, where we have defined �eff � �k
6
F"�" � k

6
F#�#�=

�k6
F" � k

6
F#� for the case of three dimensions to be an

effective relaxation time. Now we note that both the
skew-scattering and the side-jump contributions for the
anomalous Hall effect and the spin Hall effect appear in
very similar forms, except for an extra factor of 2 which
comes from �z=2 in the definition of the spin Hall current
Eq. (3). In the particular case of two dimensions, the
relaxation times for spin-up and spin-down carriers are
equal, �" � �# (since the density of states per spin is a
constant); we have the equality between the spin Hall
mobility and the anomalous Hall mobility (except for a
factor of 2 as explained above): �SH

xy =n � ~�AH
xy =2 s.

In summary, we have obtained analytic formulas for the
extrinsic spin Hall effect in 2D and 3D doped semicon-
ductor structures using a Kubo formula-based diagram-
matic perturbation theory. Our theory explicitly manifests
the formal connection between the SHE and the AHE. We
find that the recent experimental results of Kato et al. [8]
are consistent with our (admittedly crude) estimate of the
extrinsic SHE, whereas the experimental results of
Wunderlich et al. [10], while being larger than our esti-
05660
mate, are not impossibly large given the uncertainty in the
precise knowledge of the SO coupling strength. We there-
fore suggest the possibility, at least as a matter of principle,
that the recent experimental observations of the SHE in
GaAs are the confirmation of a beautiful prediction [1,2]
going back more than thirty years.

We thank Bert Halperin for helpful comments. This
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(1973); A. Crepiéux and P. Bruno, Phys. Rev. B 64,
014416 (2001); V. K. Dugaev et al., Phys. Rev. B 64,
104411 (2001).

[15] Our choice is consistent with that of Engel et al. in
Ref. [11], who substituted c! c=79 and m! 0:067 m
for GaAs, leading to an enhancement of 79=0:067–1179 in
the vacuum Compton wavelength for the GaAs SO cou-
pling.

[16] R. Winkler, Spin-Orbit Coupling Effects in Two-
Dimensional Electron and Hole System (Springer, New
York, 2003).


