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Mapping of the Anisotropic Two-Channel Anderson Model
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We establish the correspondence between an extended version of the two-channel Anderson model and
a particular type of biresonant level model. For certain values of the parameters the new model becomes
quadratic. We calculate in closed form the entropy and impurity occupation as functions of temperature
and identify the different physical energy scales of the problem. We show how, as the temperature goes to
zero, the model approaches a universal line of fixed points non-Fermi liquid in nature.
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The challenge of single impurity models has a long
history that started some four decades ago with the study
of the single-channel Kondo model [1]. The strongly
coupled physics of its low temperature regime was deter-
minant in the need to employ nonperturbative techniques to
unravel the physics and the nature of the infrared fixed
point. The landmark achievements in this respect were the
numerical renormalization group study of Wilson [2] and
the Bethe ansatz solution of Andrei and Wiegmann [3,4] on
one hand, and the identification by Toulouse [5,6] of a
solvable point of the anisotropic version of the model on
the other hand. These three techniques are special because
they allow the study of the crossover regime leading to the
unambiguous identification of the strongly coupled Fermi-
liquid fixed point of the model. These tools were subse-
quently successfully applied to more general models in-
corporating valence fluctuations [7], or multiple channels
and non-Fermi-liquid characteristics [8]; the next logical
step was to consider models incorporating both elements
simultaneously in order to understand their interplay.

The ideas behind the two-channel Anderson model were
first introduced in an attempt to model the non-Fermi-
liquid physics of certain U-based heavy fermions like the
UBe13 compound [9]. Its relationship to the two-channel
Kondo model [10] is as in the case of the respective single-
channel models: it not only captures the local-moment
physics and provides a physical mechanism for moment
formation, but at the same time also describes other re-
gimes in which mixed valence prevails all the way down to
the lowest temperatures. This is of great relevance because
a large number of compounds are believed to be near
mixed valence, and therefore a good understanding of the
full Anderson model physics should prove instrumental in
the description of their phenomenology [8]. Whereas the
outermost f shell of, for instance, Ce ions in typical heavy-
Fermion compounds is usually singly occupied, that of U
ions is believed to fluctuate between the 5f2 and 5f3

valence states. A minimal model that takes into account
spin-orbit and crystal-field effects leads to modeling those
two states with �3 (flavor) and �6 (spin) doublets that
hybridize with �8 conduction electrons [8].
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On the other hand, the quest to a better understanding of
non-Fermi-liquid physics has recently permeated into the
field of mesoscopics and there are several attempts at
realizing two-channel Kondo physics in the controlled
and highly tunable realm of quantum dots [11–13]. Real-
izations based on the two-channel Anderson model may
allow for a more robust description of certain aspects of the
physics of such devices, like the charge fluctuations behind
their capacitance line shapes [14].

Among the different nonperturbative techniques men-
tioned above, bosonization—or Coulomb gas—based
mappings occupy a singular place [15]. Their appeal is
due to the elegance of the solution and the simplicity of the
picture that emerges from them; these qualities are invalu-
able in providing an intuitive understanding of the physics
and render them complementary to more involved tech-
niques like Bethe ansatz [16] or numerical renormalization
group [2]. In this Letter, we present a mapping between the
anisotropic two-channel Anderson impurity model and a
resonant-level Hamiltonian that for particular values of the
parameters becomes noninteracting. This property is
analogous to the so-called Toulouse point of the single-
channel Kondo problem [5,6], but displays characteristics
of non-Fermi-liquid physics like in the Emery-Kivelson
mapping for the two-channel Kondo problem [17–21].
Moreover, our mapping of the two-channel Anderson
model fully captures also the physics of mixed valence,
something achieved previously only in the infinite-U
single-channel case [22]. We confirm, in a very compact
unified language, all the predictions made recently for the
model using a variety of other nonperturbative techniques
[23–28]. We identify the two crossover energy scales of
the model, below which the physics is governed by a line of
non-Fermi-liquid fixed points. We are able to calculate
both dynamical and thermodynamical quantities of interest
over the full temperature range, across both crossovers, and
connect explicitly all different high temperature regimes
with the zero-temperature line of fixed points.

We are thus lead to consider the following generaliza-
tion of the two-channel Anderson Hamiltonian: H �
Hhost �Hi�h �H3. The first two terms correspond to the
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FIG. 1 (color online). Pictorial representation of the aniso-
tropic two-channel Anderson impurity model before (right)
and after (left) the mapping onto a Fermi-Majorana biresonant
level model.
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band electrons ( y��),

Hhost �
X
��

Z
dx y���x���i@x� ���x�; (1)

and to the impurity (Xab),

Hi�h � "s
X
�

X�� � "f
X
�

X �� �� � V
X
��

�X� �� ���0�

�  y���0�X ����: (2)

Taken together they constitute the standard two-channel
model. Here we have described the Hilbert space of the
impurity using Hubbard-operator notation, Xab � jaihbj,
where a; b � �� �"; #�; � �� � ��; ���. The third term, H3 �P
�H

�
3 , involving density-density interactions in the differ-

ent sectors ���, is mainly added to break the two SU�2�
symmetries in spin and flavor, introducing anisotropy as is
standard in renormalization group (RG) and Coulomb-gas
analysis. The impurity densities involved are

Xc � Xsf �
X
�

X�� �
X
�

X �� ��; Xs �
X
�

�X��;

Xf �
X
�

�X �� ��:
(3)

The corresponding terms in the charge �c�, spin �s�, flavor
�f�, and spin-flavor �sf� sectors are

H�
3 � J3

�X�
X

���0�0
 y���0���

��;�0�0 �0�0 �0�; (4)

where

�c
��;�0�0 � ���0���0 ; �s

��;�0�0 � ���0�3
��0 ;

�f
��;�0�0 � �3

��0���0 ; �sf
��;�0�0 � �3

��0�
3
��0 ;

(5)

and �3 is the third Pauli matrix.
Many times, the physics of �1�1�-dimensional models is

more transparent in a bosonic representation [15]. The
bosonization prescription reads  ���x� � e�i����x�=���������

2�a
p

, with a a regulator that goes to zero in the contin-
uum limit [29]. It is convenient to change basis in the
bosonic fields according to ��� � ��c � ��s � ��f �

���sf�=2. Even more, we find that remarkable simplifi-
cations are achieved by performing the canonical trans-
formation U �

Q
�e

i�����0�X� , with 2�c � �s � ��f �
2�sf � 1=2. This unitary transformation is a generaliza-
tion of the one used in the study of Kondo-type impurity
exchange models. By choosing J3

� � ���, the first and
third terms of the Hamiltonian yield

U�Hhost �H3�U
y �

X
�

H�
0 	

1

4�

X
�

Z
dx�@x���x��

2:
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On the other hand, the impurity terms become

UHi�hU
y � "s

X
�

X�� � "f
X
�

X �� �� �
V���������
2�a
p ��X" �� � X# ���

� ei�sf �X" �� � X# ��� � H:c:�:
We can next refermionize the model introducing the
fermionic operators f � X �� �� � X"# and d �

e�i�f
yf�X" �� � X# ���, plus the new prescription  ��x� �

e�i��f
yf�dyd�e�i���x�=

���������
2�a
p

. We find that the impurity
couples only to the spin-flavor sector and the physics is
governed by the following Fermi-Majorana biresonant
level model (see also Fig. 1):

Hbires � Hsf
0 � "d

yd� "s �
�������
2�
p

� ysf�0�d� d
y sf�0��

�
������
2�
p
�fy � f��dy � d�; (6)
where " � "s � "f, � � V2=2, and � � �=2�a. This is a
purely quadratic model, on which reintroducing the terms
with nonzero 	� � �� � J

3
�=� would parametrize the de-

viations from the solvable point (cf. Refs. [30,31]). It is
interesting to point out the similarities and differences
between this model and the Majorana resonant-level model
that corresponds to the solvable point of the two-channel
Kondo model [17]. In both cases the impurity hybridizes
only with  ysf, but for the Anderson case the situation is
more complex: two fermionic degrees of freedom are
required to represent the impurity—one (dy) with a chemi-
cal potential " that vanishes at the intrinsic mixed-valence
point, and goes off-resonance in the local-moment re-
gimes, and a second one (fy), related to the spin and flavor
fluctuations, that couples only via one of its Majorana
components and is always resonant in the absence of
external fields. As in the Kondo case, the other Majorana
component of fy exists completely decoupled from the rest
of the system and will be responsible for the fractional
residual impurity entropy that we discuss below.

It is a relatively simple task to extract the impurity
thermodynamics and correlation functions at the solvable
point. The impurity free energy can be conveniently com-
puted using Pauli’s trick of integrating over the coupling
constants. After some algebra, one arrives at
2-2
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���0 �
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0
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h	�Hbires �H

sf
0 �i	

� �
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X
n
0

@	D�!n; 	�
D�!n; 	�

; (7)

where

D�!; 	� � 	4�8��� �2!�

� 	2�8�!� "2!� 2�!2� �!3

and !n � ��2n� 1�=
 are fermionic Matsubara frequen-
cies. Introducing a suitable regularization that can be re-
moved later from the actual physical quantities, one
computes the different magnitudes of interest. In particular,
the impurity entropy is given by S� S0 �

P
ks�zk� with

s�z� � z
�
 
�
1

2
� z

�
� 1

�
� ln�

�
1

2
� z

�
�

1

2
ln� (8)

and  �z� the digamma function. Here zk � �
!k=2�,
with !k�0;1;2 the three roots of D�!; 1�. One finds that in
the physical regime !0 is real while !1;2 are complex
conjugate of each other. That prompted us to identify the
Kondo and Schottky temperature scales:

TK 	 �!0=2�kB < TS 	 j!1j=2�kB; (9)

so that

S� S0 � s�TK=T� � �Schottky contribution�: (10)

Remarkably, the function s�z� is the same as that found for
the entropy of the two-channel Kondo model at the Emery-
Kivelson point [18]. This is not completely unexpected,
since Kondo is the low energy effective theory for most
part of the parameter regime of the two-channel Anderson
model. For the sake of illustration, in Fig. 2, we show the
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FIG. 2. Impurity contribution to the entropy as a function of
temperature for different values of " (0, �2, �4, �6, �8). The
solid lines correspond to the results for the soluble point after
identification of the scales with the ones of the isotropic model.
For the sake of contrast, the corresponding curves for the latter
are shown with dashed lines for the same set of values of ".
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impurity contribution to the entropy as a function of tem-
perature for the full range. For the purpose of this figure,
we have identified the two scales with those of the isotropic
model [24], which allows us to conveniently display in the
same plot the results for the latter. The figure illustrates
how, for large j"j, the entropy of the impurity is quenched
in two stages as the temperature is lowered: kB ln4!
kB ln2! kB ln

���
2
p

. For small j"j, the two quenching steps
coalesce on a single one. In all cases, the final value of the
entropy is the same, and indicative of the non-Fermi-liquid
character of the zero-temperature fixed points. Notice that
the main difference between the curves for the isotropic
model and those for the anisotropic one at the soluble
point, reside in the shape of the second, or Kondo, quench-
ing step. This difference could be traced back to the
absence of the leading irrelevant operators at the soluble
point (cf. with the same situation in the case of the two-
channel Kondo model). In the language of specific heats,
the T lnT leading terms are absent from the soluble aniso-
tropic model and can be recovered using perturbation
theory in 	� (cf. Refs. [17,31]). The same holds true for
the leading logarithms in the magnetic and flavor suscep-
tibilities [30].

Another quantity of interest is the impurity charge va-
lence nc � @�=@" given by

nc � nc;0 �
1




X
k

 
�
1

2
� zk

�
@"zk: (11)

This is an aspect of the physics inherent to Anderson-type
models and of particular relevance in their application in
the context of quantum dots and other mesoscopic systems
that allow direct measurements of it [14]. The valence
starts at nc;0 � 1=2 for high temperature (T � TS) and
evolves to reach finally a certain zero-temperature value
n0
c 	 nc�"�T�0 that labels the line of fixed points of the

model. Figure 3 shows normalized curves for the tempera-
ture dependence of the impurity charge valence. The
quenching of the valence fluctuations takes place at the
characteristic scale TS. The correspondence between the
bosonization results and the results for the isotropic case is
rather good for large j"j, and the differences for small j"j
are in part due to the difficulty for identifying the scales of
the two models. Nevertheless, subtle aspects of the small
j"j curves, like the ‘‘overshoot’’ of the curves at intermedi-
ate temperatures T & TS, are also present at the soluble
point. All this shows that the isotropic model and the
soluble anisotropic point not only share the same infrared
fixed-point behavior, albeit with different irrelevant opera-
tors content, but also display matchable generic ultraviolet
physics.

In summary, we have shown that the anisotropic two-
channel Anderson model can be solved exactly for particu-
lar values of the coupling constants in the extra H3 term of
the Hamiltonian. Using bosonization, we demonstrated
that the problem reduces to the study of a noninteracting
Fermi-Majorana biresonant level model. Deviations from
2-3
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FIG. 3. Normalized curves of the impurity charge valence as a
function of temperature. The results for the soluble anisotropic
case (solid lines) and Bethe ansatz results for the isotropic case
(dashed lines) are displayed for different values of " (� 2, �4,
�6, �8).

PRL 96, 056402 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
10 FEBRUARY 2006
the solvable point can be taken into account using pertur-
bation theory in, call it, �H3. The advantage of the method
is evident: closed analytical expressions can be derived for
the full temperature crossovers of the different quantities of
interest; this sets the approach apart from other nonpertur-
bative techniques applied to the model in the past.
Although the fixed-point line of the solvable anisotropic
case is the same as for the usual isotropic model (i.e.,
anisotropy is irrelevant), the leading irrelevant operator
content of the anisotropic model is more restricted, which
lies behind its greater simplicity. A manifestation of this
difference is found, for instance, in the results we presented
for the impurity entropy. On a different front, and as
compared with pure-exchange type of models like the
two-channel Kondo, the Anderson model brings in as
well the physics of mixed valence and charge fluctuations.
We have shown that the essential aspects of this physics are
again well captured by the biresonant level Hamiltonian. In
a future contribution, we plan to give more specialized
technical details of the Abelian bosonization procedure
and discuss the different field susceptibilities [32]. This
work opens up multiple other possibilities for the study of
two-channel Anderson models as applied to the physics of
heavy-fermions and mesoscopic systems. One may, for
instance, consider the behavior of more than one impurity
and, in particular, the case of two-channel Anderson
lattices.
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