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Arnold Tongues in a Microfluidic Drop Emitter
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The Letter reports an experimental study of microfluidic droplets produced in T junctions and subjected
to a local periodic forcing. Synchronized and quasiperiodic regimes—organized into Arnold tongues and
devil staircases—are reported for the first time for a system dedicated to drop emission. The nature of the
dynamical regime controls the droplet characteristics. These phenomena are mostly controlled by the
characteristics of the forcing and the flow conditions.
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FIG. 1. (a) Top view of the experiment. Tetradecane (black)
and water labeled with fluorescein (white) meet in the
T junction, emitting droplets. (b) Sketch of the actuation system
(1) working channel; (2) actuation channel; textured regions
such as (3) PDMS; (4) glass substrate. The working and the
actuation channels are separated by a membrane. (c) Typical
Fourier power spectrum for a T junction producing droplets
without actuation.
Emulsions are dispersions of micrometric droplets in
liquids. Emulsions are widely used in a number of indus-
trial domains, such as pharmaceutical [1,2], cosmetic [3],
and food industries [4,5]. Over the last 50 years, emulsion
science made considerable progress at fundamental and
engineering levels. Recently, microfluidic technology of-
fered new prospectives for this domain. In microfluidic
technology, droplets of micrometer sizes are produced
[6–12] and individually manipulated. This defines a ‘‘bot-
tom up’’ approach to emulsion science, by opposition to
the ‘‘top down’’ traditional techniques that typically handle
large populations of droplets. In this context, tasks out of
reach by traditional approaches, such as controlling the
droplet size without changing the conditions of production,
may be envisioned. To achieve such a task, a natural idea is
to operate with a physical perturbation imposed close to the
region where the droplets are formed and keep the flow
rates, in the average, constant. Nonetheless, the drop for-
mation process is a nonlinear instability, and its coupling
with an actuator may give rise to complex behavior. The
purpose of this Letter is to unravel the phenomena occur-
ring in such a situation, and examine the consequences on
the characteristics of the emitted droplets. By working with
mechanical integrated actuators in T junction drop emit-
ters, we obtained Arnold tongues and devil staircases, with
characteristics mostly controlled by the flow conditions.
Arnold tongues were observed in physical and chemical
systems [13,14], but to the best of our knowledge, their
observation in a drop emitter, miniaturized or not, along
which their impact on the drop size characteristics have
never been reported so far.

The experimental system is sketched in Fig. 1. It consists
in a main channel that forms a T junction with a channel
perpendicular to it (‘‘side channel’’) equipped with a local
actuator. The actuator is made using multisoft layer lithog-
raphy [15]. Briefly, this technology consists of microfab-
ricating two polydimethylsiloxane (PDMS) channels,
placed on top of each other, and separated by a thin
membrane. Taking advantage of the elastic properties of
PDMS, one may easily deflect the membrane by applying
pressure on the membrane. In the experiments we are
06=96(5)=054501(4)$23.00 05450
carrying out, the actuating channels are 20 �m deep and
100 �m wide. The dimensions of the working channels are
either 20� 200 or 40� 200 �m2. The membrane that
separates the two channels (working and actuating) is
20 �m thick. In our device, the actuating channel stands
on the lower level, the working channel on the upper one.

Tetradecane with surfactant (SPAN 80 at concentrations
between 1% and 3% in mass) and deionized water mixed
with fluorescein are the working fluids. They are driven,
respectively, through the main and side channels. They
meet at the T junction, forming droplets. We used hydro-
static pressure or syringe pumps to drive the fluids, span-
ning a range of flow rates lying between 0.1 and
20 �l=min . The actuation channel is filled with water.
Electromagnetic valves driven by waveform generators
force the pressure above the membrane to vary periodically
in time. The membrane thus periodically deflects at con-
trolled amplitudes and frequencies. The observations of the
oil-water structures are made using fluorescence micros-
copy. In order to characterize the dynamics of the system,
we measure the local fluorescence intensity at a few hun-
1-1 © 2006 The American Physical Society
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FIG. 2. Fourier power spectra obtained at different forcing
frequencies, with pressure driven flows, in a 40 �m deep micro-
channel; the natural frequency f0 is 2.37 Hz in cases (a), (b), and
(c). (a) ff � 2:4 Hz (1=1 resonance). (b) ff � 7:5 Hz (1=3
resonance). (c) ff � 3:76 Hz (2=3 resonance). (d) (Here, the
natural frequency is 6.7 Hz.) ff � 12:8 Hz (quasiperiodic re-
gime).
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dred microns from the T junction downstream. This signal
is controlled by the fluorescence emitted by the droplets
driven along the main channel. When equal size droplets
are emitted at a constant frequency, the signal that we
obtain is periodic in time. When the emission is aperiodic
and the droplets have irregular sizes, the observed signal is
aperiodic. This measurement thus allows one to character-
ize the dynamical state of the system. The fluorescence
intensity is recorded and analyzed by various methods
(Fourier transforms, statistical distributions, etc.). We
also systematically measured the droplets’ areas by using
standard image processing techniques.

In the absence of an external forcing, and within the
range of flow rates we considered, one produces water
droplets in oil with sizes comparable to the microchannel’s
width. The drop formation process proceeds in several
steps: water penetrates into the main channel, forms a
blob, developing a neck; the neck elongates and becomes
thinner as the water blob is advected downstream; it even-
tually breaks up, giving rise to the emission of a droplet.
This process is periodic in time, as confirmed by the
Fourier spectra that include a single fundamental peak
and its harmonics [see Fig. 1(c)]. We have documented
in detail the dependence of the fundamental frequency f0

with the flow-rate conditions.
The mechanical actuators affect the drop formation

process in a rather subtle way: the actuators modulate
the water flow rate, which in turn modulates the natural
frequency f0. We deal here with a parametric resonance
process interacting with a nonlinear instability. From the
knowledge of similar dynamical situations [16], one may
expect that synchronized and quasiperiodic regimes de-
velop in our system. This is what we observed: an example
of a synchronized regime, obtained with oil and water
being driven by gravitational forces, is shown in
Fig. 2(a). Here, the system is forced at a frequency ff
equal to 1.013 times the natural frequency f0, and we
observe that the natural oscillator synchronizes with the
external frequency. Synchronized states are obtained by
forcing the system at a frequency close to a multiple (or
some rational number) times the natural frequency. An
example is shown in Fig. 2(b), where the system is
forced at 3.16 times the natural frequency f0 and the
droplet emission synchronizes at a frequency equal to
one-third of the forcing frequency. Similar synchronized
states were obtained, in which droplets are emitted at 1=2,
2=3 [see Fig. 2(c)], 3=5, 1=4, or 1=5 the forcing frequency.
In the synchronized states, the system delivers regular
drops at regular intervals of time. The other regimes we
observed are quasiperiodic (QP). An example is shown in
Fig. 2(d), where the system was forced at a ratio frequency
f0=ff � 0:53. In this case, the spectrum displays a series
of distinct peaks given by a linear combination of two
independent frequencies (with integer coefficients)—the
natural one and the forcing one. This is characteristic of a
05450
quasiperiodic regime [16]. In the quasiperiodic regimes,
the droplets are emitted irregularly and they have irregular
sizes.

By varying the forcing frequency ff and spanning a
range of actuation pressures P (which controls the forcing
amplitude), one can map out the phase-locked and quasi-
periodic states on a single diagram (see Fig. 3). In this
diagram, the gray regions represent conditions for which
the droplet emission is synchronized at the forcing fre-
quency times some rational number. One obtains
tongues—Arnold tongues—with widths growing with
the forcing amplitude. Outside the tongues, the regimes
are quasiperiodic.

We examined horizontal cuts of such a diagram, by
keeping P fixed and varying the forcing frequency ff. A
typical plot characterizing such a cut is shown in Fig. 3(b).
Here, the ‘‘winding number’’ W is determined by counting
the number of drops Nd emitted during a large number Nf
of forcing periods, and computing the ratio Nd=Nf. The
evolution of W with ff has the form of a staircase that
evokes the ‘‘devil staircase’’ obtained close to the chaotic
line in the circle map model [16]. The staircase of Fig. 3(b)
reveals three plateaus (there are others located at rational
numbers such as 2=3, but they are hard to distinguish).
Outside the plateaus, one has quasiperiodic regimes, with
winding numbers varying with the forcing frequency.

We found that the width of the synchronized regions and
thus the sizes of the steps in the devil staircases mostly
depend, for a fixed geometry, on the flow rates and—as
shown above—on the actuating pressure amplitude P. The
other parameters (SPAN 80 concentrations in the range
1%–3%, detailed waveform of the forcing) play a minor
1-2
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FIG. 4. Regions of synchronization and quasiperiodicity ob-
tained for an oil flow rate of 6:7 �l=min and an actuation
pressure P � 2 bar. The range of variation of the water flow
rate extends from 0.3 to 4 �l=min . The susceptibility S is
determined, without forcing, from the experimental curve f0 �
f�Qw�. The symbols appearing on the plot signal the various
synchronized regimes obtained at 1 (crosses), 1=2 (circles), or
1=3 (diamonds) of the forcing frequency. (a) Evolution with
f0=ff of the ratio of the droplet size � (as compared to �0,
obtained without forcing. (b) Evolution with f0=ff the relative
dispersion �r of the droplet sizes. On this plot, the crosses
correspond to QP regimes and the disks to synchronized states.
Plots (a) and (b) are obtained for S � 550 �l�1.
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FIG. 3. (a) Synchronized (gray zones) and quasiperiodic re-
gimes (white zones) shown on a diagram where the ordinate is P
and the abscissa is the ratio of the natural frequency f0 over the
forced frequency ff. Syringe pumps are used, imposing oil and
water flow rates of, respectively, 4 and 0:3 �l=min . The micro-
channel depth is 20 �m. Droplets are shown in some cases.
(b) Evolution of the winding numbers W with the ratio of the
natural frequency over the forcing frequency. The microchannel
depth is 40 �m in this case, and the oil and water flow rates are 2
and 0:40 �l=min , respectively. The plateaus, which correspond
to specific rational numbers, reveal synchronized states; outside
the plateaus, the regimes are quasiperiodic and the winding
number varies with the forcing frequency. This plot is often
called ‘‘devil staircase.’’
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role. The dependence in P and in the flow conditions can be
accounted for by formalizing a preceding remark about
parametric resonance. In our system, the natural frequency
f0 depends on the water flow rate Qw that is modulated by
the actuator at an amplitude " and a forcing frequency ff,
for small ", and one may write the following expression:

f0�Qw� � f0� �Qw � " sin2�fft�

� f0� �Qw� � "
@f0

@Qw
sin2�fft

in which �QW is the time-averaged water flow rate, ff the
forcing frequency, t the time, and @f0

@QW
the derivative of f0

with respect to the water flow rate �QW , for a fixed oil flow
rate, without forcing. The formula shows that the ‘‘suscep-
tibility’’ S � @f0

@QW
controls, in addition to the actuation

pressure P (incorporated in the parameter "), the effective
amplitude of the forcing, and thereby the sizes of the
domains of existence of the synchronized regimes. This
feature is shown in Fig. 4 in which the oil flow rate along
with pressure P is kept constant, but different water flow
rates are imposed. We obtain Arnold tongues similar to
Fig. 3(a), but now depending on the susceptibility S instead
of the actuation pressure P. We plotted the evolution of the
droplet sizes with the forcing frequency, for a particular
05450
value of S [see Fig. 4(a)]. The curve has the form of a saw,
each tooth corresponding to a synchronized region. Along
each tooth, the droplet volume varies as the inverse of the
actual emission frequency, a law that can be accounted for
by invoking volume conservation. Figure 4(b) is reminis-
cent of the devil staircase. We also measured in the same
conditions the evolution of the dispersion in size of the
emulsion (i.e., the standard type deviation of the droplet
size distribution divided by their mean size) with the forc-
ing frequency [see Fig. 4(b)]. We found that in quasi-
periodic regimes, the dispersion is several times larger
than in synchronized states. This reveals a spectacular
impact of the nature of the dynamical regime on the droplet
characteristics.

Synchronized regimes are interesting from the view-
point of droplet size control and production of monodis-
persed emulsions. According to our study, broad domains
of synchronization are obtained at large P and large S. One
remarkable example is shown in Fig. 5: here, we imposed S
on the order of 2000 �l�1 —and we worked at a constant
maximum actuation pressure in a 20 �m high microchan-
nel. In this case, the devil staircase shrinks to a single step
located at a winding number equal to 1. Here, synchroni-
zation holds throughout the 1 order of magnitude range of
variations of the forcing frequency. On Fig. 5, we have
reported the evolution of the drop volume in a function of
the actuation frequency. The graph is related to that of
Fig. 4(a), but with a single tooth. The present flow con-
ditions appear as particularly suitable for droplet control.
1-3
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FIG. 5. Evolution of the droplet volumes in a function of the
actuation frequency, in a 20 �m deep microchannel; oil and
water flow rates are, respectively, 4 and 0:1 �l=min , and the
actuation pressure P is 1.7 bar. The pictures represent droplets at
various frequencies. The inset shows the evolution of the wind-
ing number with f0=ff, and indicates that the devil staircase
includes one single step.
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To conclude, we observed complex behavior in a droplet
emission system dedicated to produce controlled emul-
sions in a microfluidic system. By working with appropri-
ate flow conditions, one may either favor synchronized
regimes giving rise to monodisperse emulsions of con-
trolled sizes or promote quasiperiodic regimes giving rise
to polydisperse emulsions. The complex behavior we ob-
served here can be qualitatively accounted for by referring
to a parametric resonance mechanism coupled to a non-
linear instability. Arnold tongues and devil staircases along
with their spectacular impact on the droplet characteristics
have never been observed so far in a hydrodynamic system,
miniaturized or not, dedicated to droplet production.
05450
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