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Revealing the Building Blocks of Spatiotemporal Chaos: Deviations from Extensivity
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We have performed high-precision computational studies of the fractal dimension as a function of
system length for spatiotemporal chaotic states of the one-dimensional complex Ginzburg-Landau
equation. Our data show deviations from extensivity on a length scale consistent with the chaotic length
scale, indicating that this spatiotemporal chaotic system is composed of weakly interacting building
blocks, each containing about 2 degrees of freedom. Our results also suggest an explanation of some of the
‘‘windows of periodicity’’ found in spatiotemporal systems of moderate size.
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Researchers seeking to understand the macroscopic
properties of systems composed of a large numbers of
objects (e.g., atoms, magnetic spins, stock traders, etc.)
often employ a statistical approach in which the interac-
tions between the objects are treated probabilistically,
avoiding the necessity of knowing the details of each
individual interaction. Equilibrium statistical mechanics,
the application of this approach to systems in thermody-
namic equilibrium, has led to an understanding of the
phases of matter, the transitions between these phases,
and the deep property of universality, which explains
why systems that are physically quite distinct (for example,
gases and magnets) behave identically in fundamental
ways near phase transitions. Although researchers have
extended equilibrium statistical mechanics to systems
only slightly perturbed away from equilibrium, scientists
have largely been stymied in their efforts to develop a
similar approach for broad classes of systems far from
equilibrium [1–3]. A particularly intriguing set of far-
from-equilibrium systems exhibit the phenomenon of spa-
tiotemporal chaos (STC), which is characterized by a
chaotic dynamics that persists indefinitely and by spatial
disorder often punctuated by topological defects or patches
of uncorrelated regions [1–3]. Large, deterministic sys-
tems as diverse as fibrillating heart tissue [4], chemical
reaction-diffusion systems [5], convecting fluid layers [6],
and colonies of microorganisms [7] display this remark-
able behavior. Often a particular spatiotemporal chaotic
system will behave qualitatively differently for different
system parameters, and the transitions between these cha-
otic ‘‘phases’’ closely resemble the phase transitions in
equilibrium systems [3,5,8–12]. For one such system, re-
searchers have even demonstrated that the long wavelength
behavior is indistinguishable from an equilibrium system
of the Ising universality class [13]. Despite these provoca-
tive findings from experiments and simulations, little
progress has been made toward developing a predictive
theory of these systems.

To develop a statistical mechanics of STC, an under-
standing of the effective degrees of freedom in the system
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is almost certainly necessary. For equilibrium systems it is
usually intuitively clear which degrees of freedom deter-
mine the macroscopic behavior. For example, in a study of
the behavior of a gas of argon atoms, the atoms, and not the
nucleons or the quarks comprising the nucleons, are the
fundamental degrees of freedom. The faster dynamics of
the nucleons and quarks within the nucleus is slaved to the
slower dynamics of the atom as a whole such that the
macroscopic behavior of the gas is determined by the
interactions of the atoms as ‘‘fundamental’’ units. In con-
trast, STC systems usually contain a broad spectrum of
length scales and time scales, making it unclear how to
identify the appropriate fundamental degrees of freedom
underlying the macroscopic behavior; however, the fractal
dimension D can be considered a measure of the average
number of independent degrees of freedom necessary to
characterize the state of the system [14]. For large STC
systems, D has been found to be extensive [10,15–18],
meaning that it grows linearly with the volume of the
system Ld, where L is a characteristic length and d is the
dimensionality of the system. Ruelle has argued [19] that
the extensivity of D arises in STC due to spatial disorder:
since distant regions are uncorrelated, their dynamics is
also uncorrelated, and thus each region contributes inde-
pendently to D. Cross and Hohenberg [1] make this more
explicit by defining a natural chaotic length scale,

�� �
�
D

Ld

�
�1=d

; (1)

for large L, such that a volume of size �d� contains on
average 1 degree of freedom. The chaotic length scale �� is
typically small compared to length scales that characterize
the macroscopic state of the system [10,16–18,20], and, for
two different systems, researchers have found a physical
quantity with spatial correlations of a length scale propor-
tional to �� [10,17,21], providing hope that each degree of
freedom might be directly associated with a region of the
system of volume �d�. Further bolstering this case is a study
of a two-dimensional STC system containing topological
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defects, in which it was shown that each defect could be
associated with approximately 2 degrees of freedom [22].

Two research groups [23,24], however, have cast doubt
on the interpretation of �� as a direct measure of the extent
of individual degrees of freedom, and, indeed, whether the
degrees of freedom are even localized. If the underlying
building blocks of STC are objects of size about �d�, it is
likely that a careful study of D as a function of system
volume Ld would show structure on the scale of �d�, while
still maintaining an extensive growth on average. For
example, one possibility would be a step structure with D
completely quantized—increasing by 1 each time the
system is increased in volume by enough to add exactly
one more building block. A smoother increase is also
possible, since, for example, the system could contain
different numbers of building blocks at different points in
time, with the blocks ‘‘stretching’’ or ‘‘compressing’’ a
little to match the system size. The system might jump
back and forth (perhaps in a process analogous to thermal
sampling) between states containing a number of building
blocks close to, but not exactly, Ld=�d�. In such a situation,
there would likely still be structure at the scale of �d�, but
averaging would reduce the magnitude of the deviations
from extensivity in comparison to the completely quan-
tized scenario. Researchers tested this idea on two different
STC systems and found that D was, instead, ‘‘microexten-
sive’’ [23,24], meaning that for large systems the dimen-
sion grew strictly linearly (to the precisions of their
studies) even for very small changes in the length of the
system. These findings significantly weakened the idea that
STC could be treated as a collection of D spatially distinct
degrees of freedom.

Here we report high-precision studies of a prototypical
spatiotemporal chaotic system showing, in contrast to these
earlier works, clear violations of microextensivity. These
violations occur on a length scale consistent with �� over a
range of system parameters, providing solid evidence that
STC is composed of interacting chaotic building blocks of
size ��. The magnitudes of the violations are small, per-
haps implying that the effective temperature is large (or,
alternatively, that the forces between the building blocks
are weak), and we argue that the form of the violations may
reveal the nature of the symmetry of the effective potentials
(or forces). Furthermore, the nature of the violations sug-
gests an explanation of the ‘‘windows of periodicity’’
found in STC systems of moderate size.

To investigate the possibility of deviations from micro-
extensivity, we studied numerical solutions of the com-
plex Ginzburg-Landau equation in one spatial dimension
(d � 1):

@tA � A� �1� ic1�@2
xA� �1� ic3�jAj2A; (2)

where A�x; t� is a complex-valued field on a periodic spatial
interval of length L, and c1 and c3 are real constants.
Equation (2) describes any system near the onset of a
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Hopf bifurcation from a stationary, homogeneous state to
an oscillatory state [1], including a number of systems that
have been studied experimentally [1,25–27]. This equation
has received much attention because it is a relatively
simple continuum system that exhibits a variety of behav-
iors for different values of the parameters c1 and c3

[8,10,27]. For our studies, we maintained c1 � 3:5 and
varied c3 from 0.85 to 1.20. For this range of parameters,
the system exhibits defect chaos, and the equal-time, two-
point correlation length �2 of the field A, a measure of the
macroscopic coherence, varies by a factor of about 20
whereas �� varies by a factor of about 1.5.

We used a pseudospectral method with time splitting of
the operator [28] to numerically integrate Eq. (2). We
ensured that, to within the error bars on our measurements,
our results did not change with finer spatial or temporal
resolution, with longer integration times, or even with
changes in the components of the integration scheme.
Each data point represents an ensemble average over at
least 192 different initial conditions.

We calculated a particular fractal dimension, the
Lyapunov dimension D, in terms of the spectrum of
Lyapunov exponents [29]. These exponents characterize
the temporal evolution of solutions of Eq. (2) that differ by
only infinitesimal amounts. We calculated the exponents
using a computationally expensive technique [29] that in-
volves integrating not only Eq. (2) but also a large number
of copies of the linearization of Eq. (2) about a solution
A�x; t� [30]. If the exponents are summed in order from
largest to smallest, D is the number of exponents needed to
reach a sum of zero. Because of the discrete nature of the
Lyapunov spectrum, the sums, in general, are never exactly
zero, and the value of D is determined by interpolation
using the 5 sums with values closest to zero [31].

Figure 1(a) showsD as a function of the system length L
for c3 � 0:95. D grows approximately linearly with L,
showing the extensive nature of the dimension.
Oscillations about linear, microextensive growth can be
seen for small values of L. To highlight these oscillations
and to reveal the oscillations of smaller magnitudes, we
show in Fig. 1(b) the relative deviation from microexten-
sive behavior, �D � �D�Dext�=Dext, as a function of L.
The clear oscillations in Fig. 1(b) lead to the central con-
clusion of this Letter. Fitting the region 44 � L � 68
(about 3 wavelengths) to a cosine with decaying amplitude
yields an oscillation wavelength of �o � 8:54 spatial units,
which is approximately twice the chaos length scale �� �
4:46 determined using Eq. (1) at large L. So, the chaotic
building blocks for this state are about 8.5 units in length
and each contains approximately 2 degrees of freedom.
The wavelength of the oscillations appears to be constant
as L is varied, but the amplitude falls off rapidly with
increasing L. This decrease in magnitude is expected be-
cause for larger values of L the effect of adding additional
system length is spread across a larger number of blocks.
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FIG. 2 (color online). (a) Oscillation length scale �o as a
function of c3 for fixed c1 � 3:5 in Eq. (2). Values of �o were
determined by fitting a cosine with decaying amplitude to
�D�L�. A span of at least 3 wavelengths was used for c3 �
0:90. (b) Ratio �o=�� for the same values of c3. �� is determined
using Eq. (1) at large L. The data indicate that each building
block contains about 2 degrees of freedom. (c) Relative deviation
�D as a function of building block number, L=�o, for 6 values of
c3. The collapse shows that the deviations depend only on the
number of building blocks. Minima occur for integer numbers of
building blocks. The data near the minimum at L=�o � 5 for
c3 � 0:95 and c3 � 1:00 are influenced by a window of period-
icity.
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FIG. 1. (a) Dimension D as a function of system length L for
Eq. (2) with �c1; c3� � �3:5; 0:95�. (b) Relative deviations �D �
�D�Dext�=Dext from microextensive behavior as a function of
L, with Dext�L� � �L and � determined at large L. Oscillations
of length scale �o 	 8:5 signal the presence of chaotic building
blocks. The arrows indicate missing values of L for which
nonchaotic behavior is found. Error bars for D, determined
from the standard deviation of 200 independent measurements,
are typically smaller than 0.002. Each of the 200 measurements
is an average of many samples during a time period of at least
75 000 time units following a transient of 80 000 time units, with
time step dt � 0:05 and at least 2 spatial modes per spatial unit.
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We speculate that the small magnitude of the oscillations
in Fig. 1(b) indicates that the effective temperature of the
system is high (or, alternatively, that the effective forces
between the building blocks are weak). If the decrease in
magnitude is factored out, the oscillations appear to be
symmetric, perhaps indicating that the intrablock force is
symmetric with regard to ‘‘stretching’’ and ‘‘compression’’
and thus only contains even powers of the block separation.
With further investigation, the exact form of the effective
intrablock force might be deduced from the shape of the
deviations from microextensivity.

Figure 2(a) summarizes our measurements of �o for
several values of c3. As we increase the value of c3, the
value of �o decreases. In Fig. 2(b), we show the ratio of �o
to �� for each value of c3. The ratio is approximately 2
across this range of parameters, so the building blocks
contain about 2 degrees of freedom. We note that over
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this same range of parameters, the correlation length �2

changes by a factor of about 20 [32].
Figure 2(c) shows �D as a function of the number of

building blocks that fit in the system, L=�o, for 6 values of
c3 � 0:95. (Smaller values of c3 are subject to strong
finite-size effects for this range of L=�o.) The collapse of
the data onto a single cosine function with decaying am-
plitude indicates that the deviations depend only on the
number of building blocks in the system. Intriguingly, the
states closer to fitting an exact number of building blocks
are less chaotic (in terms of dimension per length). Perhaps
the additional dynamics arising from the frustration of
mismatched lengths yields a small contribution to D for
the states further from these minima.

Our finding that STC is composed of spatially localized
building blocks also suggests a possible explanation for at
least some of the mysterious ‘‘windows of periodicity’’
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observed in spatiotemporal chaotic systems. It has been
well documented [33] that periodic (or other nonchaotic)
behavior can be found in moderately sized systems, even
when both larger and smaller systems exhibit STC. To date,
the appearance of these windows of nonchaotic behavior
has not been understood. The arrows at L � 34:0 and L �
42:5 in Fig. 1 indicate small ranges of values of L for which
we observe nonchaotic behavior instead of STC. Similar
behavior is observed for values of c3 � 0:95. The windows
occur at the minima in the oscillations—system lengths
that fit exact numbers of building blocks. We speculate that
these windows may be the result of the system finding
perfect alignment of the blocks, whereas for larger integer
multiples of �o, the system never manages to align the
blocks [perhaps in analogy to the way finite-size effects
lead to early crystallization of a liquid or to the competition
between spiral defect chaos and stationary states in con-
vection systems of moderate size for which rolls are stable
[6] ]. For noninteger multiples of �o, the frustration of the
mismatched lengths prevents the alignment.

Our data for the complex Ginzburg-Landau equation
strongly suggest that STC is composed of weakly interact-
ing building blocks, each of which contains about 2 de-
grees of freedom. This finding provides hope that a
statistical mechanics of STC might be built by considering
these blocks and their interactions.
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H. Chaté, and M. Holen, Physica (Amsterdam) 57D, 241
(1992).

[9] J. Miller and D. A. Huse, Phys. Rev. E 48, 2528 (1993).
[10] D. A. Egolf and H. S. Greenside, Phys. Rev. Lett. 74, 1751

(1995).
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