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Diffusion-Induced Inhomogeneity in Globally Coupled Oscillators: Swing-By Mechanism
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It is shown that for random initial conditions, a large population of identical and sufficiently non-
isochronous Stuart-Landau oscillators coupled globally and diffusively exhibits inhomogeneity in a
resonant way as the diffusive coupling is intensified, where the diffusive coupling constant is real. A
category of inhomogeneous (nonsynchronized) solutions is analytically shown to exist, which is either
periodic or quasiperiodic.
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FIG. 1. The behavior of � for N � 4000 averaged over ten
realizations of the random initial condition explained in text. The
numbers attached to the data are the values of c2. The lines
connecting the symbols are to guide the eye. The inset shows
K�’s graphs in the range 0 � K � 1, 0 � K� � 0:6 for the
same values of c2, where its maximum values as well as its
maximum points indicated by the vertical dotted lines in the
main panel monotonically decrease for increasing jc2j.
The role of diffusive coupling in nonlinear dynamics is
quite interesting, because such coupling sometimes makes
the system inhomogeneous rather than uniform, in contra-
diction with the familiar understanding of its effect. Awell-
known example is the Turing instability in diffusively
coupled activator-inhibitor systems, where diffusion
causes an instability of a spatially uniform state when the
inhibitor diffuses sufficiently faster than the activator [1,2].
Another example is found in a neurophysiological context,
in which synchronization of periodic firings of model
neurons is broken by a diffusive coupling involving only
one variable [3]. In this example, strong ‘‘nonisochronic-
ity’’ (i.e., amplitude dependency of frequency) [4] due to
the existence of a saddle near the limit cycle and the one-
variable nature of the coupling are responsible for such a
peculiar effect [5].

What is common with these examples of diffusion-
induced inhomogeneity is that the diffusive coupling is
not symmetric for the variables involved, i.e., there is a
substantial difference between their diffusion constants or
parameters playing a similar role. In fact, this feature
causes at least in part the counterintuitive effects of dif-
fusive coupling in the above examples. In contrast, in this
Letter, we show that under some conditions, even perfectly
symmetric diffusive coupling can induce inhomogeneity in
globally coupled identical limit-cycle oscillators. A curi-
ous aspect of the phenomenon reported here is that the
degree of inhomogeneity of the system exhibits a reso-
nancelike behavior as the diffusive coupling is intensified.
The mechanism giving rise to these results is elucidated
below by investigating the relaxation of the system from
random initial conditions. Hence, this work may be ex-
pected to provide a new clue as to how to control the
coherence of real coupled-oscillator systems [1,2,4].
Simulation results of this work were obtained by means
of the fourth order Runge-Kutta method with time step
of 0.01.

We consider a large population of Stuart-Landau oscil-
lators [6–10] as follows:

_zj � zj � �1� ic2�jzjj
2zj �

K
N

XN

k�1

�zk � zj� (1)
06=96(5)=054101(4)$23.00 05410
for j � 1; . . . ; N, where the dot means differentiation with
respect to time t, zj is the complex amplitude of the jth
oscillator, c2 is a parameter to adjust the strength of non-
isochronicity, and K�>0� is the coupling strength. When
uncoupled, all the oscillators in Eq. (1) are identical limit-
cycle oscillators with an amplitude unity and a frequency
�c2. Note that the diffusive coupling in Eq. (1) is a scalar
type, so that the inhomogeneity-generating mechanisms
based on unequal diffusion constants will not work in the
present system. We may therefore expect that any increase
in K will either improve or maintain the homogeneity of
the system. Figure 1 reveals that this naive expectation can
be wrong. It shows the behavior of the standard deviation
of the complex amplitudes defined by

� � h�jzj � zjj2�1=2i; (2)

where the bar means an average over 1 � j � N and the
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brackets stand for a time average. The data presented in
Fig. 1 were obtained by averaging � further over a number
of random initial conditions taken in the range �1<
Re�zj�, Im�zj�< 1. For small K, � vanishes, implying
that the system falls in perfect synchronization. However,
as K is increased, � eventually starts to increase with K,
then becoming maximum, and finally decreasing towards
zero. It should be noted that this resonancelike behavior of
� cannot be attributed to destabilization and restabilization
of the synchronized state, since it can be shown to be
always stable and K’s increase simply strengthens its
stability [8]. The simulation result therefore suggests that
in the resonant regime, some nonsynchronized, inhomoge-
neous attractors stably coexist with the synchronized one in
phase space and that by a certain mechanism, one of them
is chosen for a random initial condition in such a way that
on average, the inhomogeneity of the chosen attractor is
resonantly enhanced as K is increased. Figure 2 shows a
couple of examples of such inhomogeneous solutions [11].

We now discuss the mechanism of the appearance of
such solutions forN � 1 by assuming that the nonisochro-
nicity is sufficiently strong. We start by rewriting Eq. (1) as
follows:

_rj � �1� K � r2
j �rj � KR cos��� �j�; (3)

_�j � �c2r
2
j �

K
N

XN

k�1

rk
rj

sin��k � �j�; (4)

where zj � rje
i�j andN�1 PN

k�1 zk � Rei� with rj; R 	 0.
Now we suppose that as in the simulation, the initial values
of the complex amplitudes are randomly distributed in a
sufficiently large area which is symmetric about the origin.
Then, the initial value of R, R�0�, should be as small as
1=

����
N
p

and remain small for some time. Hence, as we can
see from Eqs. (3) and (4), every oscillator will approach the
same circle on the complex plane centered at the origin
with a radius

�������������
1� K
p

, keeping their phase values randomly
distributed. Namely, the system will approach an incoher-
ent state defined by r1 � 
 
 
 � rN �

�������������
1� K
p

andPN
k�1 e

i�j � 0 [12]. For convenience, the circle will here-
after be called the incoherent circle (IC). The incoherent
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FIG. 2. Examples of desynchronized solutions for c2 � �3,
N � 1000. There are two synchronized sets of oscillators; the
bigger (size N �M) and the smaller (size M) are drawn by real
and broken curves, respectively. (a) K � 0:51 (quasiperiodic,
M � 4). (b) K � 0:94 (periodic, M � 9).
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state can be shown to be unstable in the present system
[8,9], which fact underlies the following argument.

Note that as the oscillators approach the IC, Eq. (4) tends
to reduce to the Kuramoto model [2] for identical phase
oscillators as

_�j � �c2�1� K� �
K
N

XN

k�1

sin��k � �j�; (5)

which is known to synchronize for K > 0 unless the phase
distribution is perfectly uniform, so that the oscillators will
start to synchronize in phase and this in turn will make the
mean-field magnitude R increase, because R / Q near the
incoherent state, where Q � j 1

N

PN
k�1 e

i�k j is the order
parameter of the oscillator phases. It is possible to show
[13] that the proportionality constant � � R=Q equals the
absolute value of 2�1� K�3=2�1� ic2�=f2�1� K��
�1� ic2� � K � �g, where � is a stability eigenvalue of
the incoherent state with the largest real part [8]. As a
result, as Eq. (3) implies, the oscillators begin to depart
the IC in such a way that rj increases if j�j ��j<�=2
and decreases if otherwise. The assumed strong noniso-
chronicity should then split the whole population into,
roughly speaking, two subpopulations characterized by
large and small complex amplitudes, since their effective
frequencies �c2r

2
j are quite different. In this way, the

system will evolve to an inhomogeneous state. This sce-
nario is verified in Fig. 3, where the temporal behavior
of rj; �j; R, and Q from t � 0 is exemplified. It is evident
that just around when the oscillators are on average closest
to the IC, phase order begins to emerge, leading to the
increase of R and the oscillators accordingly depart from
the circle and then break up into two groups as predicted
above.

The resonancelike behavior of � may be heuristically
explained as follows: Near the incoherent state, the coef-
ficient KR of the phase-dependent term of Eq. (3) may be
replaced by K�Q, so that the prefactor of Q, K�, is a
measure of the strength of the inhomogeneity-triggering
effect of the synchronization in phase. The dispersion �
will therefore have a maximum point near that of K� (see
the inset of Fig. 1). Moreover, in the neighborhoods ofK �
0 and 1, this prefactor is small, so that no desynchroniza-
tion will occur there. This picture explains the overall
behavior of � fairly well at least for jc2j not too large
(see the data for c2 � �3 and �5 in Fig. 1). For jc2j very
large, synchronization in phase is destroyed almost as soon
as the oscillators leave the IC, making the value of R
rapidly decrease back towards zero. As a result, the oscil-
lators approach the IC again and the whole process is
repeated with R showing large-amplitude oscillations
[13]. In this complicated regime, the above argument is
no longer feasible and in fact, there are substantial discrep-
ancies between the peak points of � and those of K�, as
seen in Fig. 1. It should also be noted that for jc2j large, the
1-2
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FIG. 4. The cluster structure of numerically found solutions for
a random initial condition and c2 � �3, N � 1000. Each seg-
ment of a vertical bar shows the size ratio of a cluster smaller
than the main cluster, which is not shown here. These segments
are placed in the order of their sizes, from top to bottom. Almost
black regions correspond to the existence of a large number of
small clusters. A cluster here is defined to be a collection of
oscillators less than 10�5 apart from one oscillator at t � 10 000.
The behavior of � is also shown.

FIG. 3. Relaxation from a random initial condition for c2 � �3, K � 0:65, N � 1000. (a) rj � jzjj, where the horizontal broken
line shows the radius of the incoherent circle. (b) �j � Arg�zj�. (c) Order parameters R and Q. The inset shows R vs Q over the ranges
0<Q, R< 1, where the dotted line shows R � �Q.
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interval of K with �> 0 penetrates into the region K > 1
in which the IC no longer exists. Here, the origin z � 0
plays a similar role as the IC [13]. We conjecture, however,
that the inhomogeneity observed for K > 1 will disappear
if the system size N is sufficiently large, because then the
oscillators should approach one another too closely to
remain nonsynchronized during the initial stage in which
they move towards the origin. In fact, it was confirmed that
for jc2j large, the upper end of the interval tends to recede
as N is increased [14].

We now analytically show that in some region includ-
ing the one where inhomogeneity emerges in simulation,
there indeed exists a stable nonsynchronized solution. Our
simulation indicates that a nonsynchronized solution is
composed of one big cluster plus a number of minor
clusters, where a ‘‘cluster’’ means a set of oscillators
showing identical behavior, including those with only
one element (see Fig. 4). Its composition not only depends
on initial conditions, but also varies in time in some cases.
Our strategy for such a complicated situation is to focus on
the simplest category of inhomogeneous solutions as zj �
z �1 � j � N � 1�, i.e., a two-cluster solution with the
size ratio �N � 1�:1. Noting that zN’s influence on the
dynamics of z is negligible for N large, we obtain z �
ei� with _� � �c2 and

_u � �1� K � ic2�u� �1� ic2�juj
2u� K; (6)

where u � zNe�i�. The last equation has a stable fixed
point at u � 1, which corresponds to perfect synchroniza-
tion of the population. Moreover, it can be shown that
05410
a pair of other fixed points exists for K < �1� c2
2�=

2�1�
��������������
1� c2

2

q
� � KSN; one of them is a saddle (say A),

while the other (say B) bifurcates as a node and then
changes to a focus. A linear stability analysis reveals that
for jc2j< 1, B remains unstable as K is decreased from
1-3
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FIG. 5. The phase diagram based on the approximation devel-
oped in text, where the rightmost, middle, and leftmost curves
show K � KSN; KH; KSC, respectively. Note that the diagram
does not depend on the sign of c2. The symbols show those
points which lead to an inhomogeneous solution in simulation of
Eq. (1) for a random initial condition, where the nature of the
solution is periodic (solid circle) or nonperiodic (cross).
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KSN to zero, while for jc2j> 1, it stays stable until K
reaches KH at which a supercritical Hopf bifurcation

occurs, where KH is given by ��2�
����������������������������
4� �1� c2

2�
2

q
=

�1� c2
2�; a stable limit-cycle created this way grows until

it suddenly disappears by colliding with the saddle A to
form a saddle connection at some point, say K � KSC.
Thus, it turns out that for jc2j> 1, the original system
(1) has a stable inhomogeneous solution in the range
KSC <K <KSN, which is periodic with the same period
as the synchronized solution for KH <K <KSN, whereas
quasiperiodic for KSC <K <KH.

The above analysis is applicable even if one big cluster
is accompanied by more than one (say, M) other oscilla-
tors, provided thatM� N. Our simulation results indicate
that in such a case, which is typical near the borders of the
nonsynchronized region (see Figs. 2 and 4), the outsiders
synchronize to form another cluster, approximately obey-
ing the same dynamics as for M � 1. A phase diagram
based on the present approximation is presented in Fig. 5,
where simulation results for N � 1000 are also displayed.
As is seen, inhomogeneity is observed for jc2j> 1, in
between the curves of KSC and KSN. Moreover, it is note-
worthy that the onset of inhomogeneity occurs very close
to the curve of K � KSC. These results demonstrate that at
least some aspects of simulation results can be captured by
the present approximation.

In summary, a new type of diffusion-induced inhomo-
geneity in globally coupled identical oscillators has been
proposed, which originates from the ‘‘swing by’’ of oscil-
lators via the incoherent circle. Although we have con-
centrated on the case of coupled Stuart-Landau equations
in this Letter, it is easy to generalize our argument and
05410
in fact, we have found similar phenomena in populations
of other periodic oscillators such as Rössler systems. In
this Letter, we have also developed an approximation
method to study the simplest category of nonsynchronized
solutions [15] and demonstrated its effectiveness in, e.g.,
explaining the emergence of quasiperiodicity in some re-
gion [16]. Hopefully, all these results will lead to a new
method to control the coherence of globally coupled oscil-
lators which appear in a variety of disciplines of science
and technology.
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