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Soliton Solutions to the Einstein Equations in Five Dimensions
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We present a new class of solutions in odd dimensions to Einstein’s equations containing either a
positive or a negative cosmological constant. These solutions resemble the even-dimensional Eguchi-
Hanson–(anti)-de Sitter [(A)dS] metrics, with the added feature of having Lorentzian signatures. They
provide an affirmative answer to the open question as to whether or not there exist solutions with a
negative cosmological constant that asymptotically approach AdS5=� but have less energy than AdS5=�.
We present evidence that these solutions are the lowest-energy states within their asymptotic class.
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Weakly coupled non-Abelian gauge theories on non-
simply connected manifolds can have ground states of
much lower energy than one might naively expect. For
example, a U�N� gauge theory on a torus of m dimensions
whose typical length is L can have its lowest-energy states
of order 1=�NL� (instead of 1=L) if N of the fields are
arranged to be periodic after traversing one circle N times
[1]. By introducing such locally flat but globally nontrivial
connections, the effective size of the compact space is
thereby increased by a factor of N, correspondingly reduc-
ing the spectrum of states. A string-theoretic interpretation
of this phenomenon is that of the low-energy excitations of
one D-brane wrapped N times around a circle, where the
U�N� gauge theory describes the low-energy excitations of
N D-branes wrapped on the torus. The N2 open strings
connecting distinct D-branes in the latter case become N
multiply identified open strings on a circle of length NL in
the former case, yielding a configuration with lower energy
states.

The preceding construction can be generalized [2] to
quotient spaces M=�, where � is any freely acting discrete
group of isometries on the compact Riemannian manifold
M, provided N � nj�j, with j�j the number of elements in
the group. By wrapping n branes j�j times each around M,
one obtains the same U�N� gauge theory as if one had
wrapped N branes once each around M=�.

In this context, the anti-de Sitter/conformal field theory
(AdS/CFT) correspondence conjecture implies the exis-
tence of extra light states in a gauge theory formulated
on a quotient space that can be regarded as the boundary of
an asymptotically AdS spacetime. Specifically, the conjec-
ture states that string theory on spacetimes that asymptoti-
cally approach AdS5 � S5 is equivalent to a conformal
field theory [N � 4 super Yang-MillsU�N� gauge theory]
on its boundary �S3 � R� � S5. Working at finite tempera-
ture (where the gauge theory is in a thermal state described
by the Schwarzschild-AdS solution), one can show [2] that
finite size effects on the gravity side become important at
high temperatures T � 1=‘ (where ‘ is the AdS radius).
The correspondence implies that the density of low-energy
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states is not affected even though the volume of S3 has been
reduced to S3=�—hence, there must exist light states of
the type described above.

At zero temperature, taking the quotient by � of AdS5

produces an orbifold with fixed points at r � 0, and cal-
culating the precise spectrum of twisted sector states is
difficult due to the Ramond-Ramond background.
However, there are suggestive arguments [2] that the
AdS/CFT correspondence still predicts the existence of
extra light states. The boundary energy of pure AdS5 is
exactly equal to the Casimir energy of N � 4 super U�N�
Yang-Mills theory on S3 with radius ‘. Taking the quotient
by � reduces both the energy and the volume by the same
factor, leaving the energy density unchanged.

The preceding conclusions would be modified if solu-
tions of Einstein’s equations with a negative cosmological
constant existed that asymptotically approached AdS5=�
but had less energy. If so, then the ground state energy
density of the strongly coupled gauge theory on S3=�
would be even smaller than on S3.

The existence of such solutions has been an open ques-
tion until now. Here we show that there do exist solutions to
Einstein’s equations with a cosmological constant in five
dimensions that are asymptotic to AdS5=Zp, where p � 3.
They are obtained from a generalization of the Taub-
Newman-Unti-Tamburino (Taub-NUT) metric [3] in a
manner analogous to that used in deriving the AdS soliton.
For a large cosmological constant, their spatial sections
approach that of the Eguchi-Hanson (EH) metric [4] and so
we call these solutions Eguchi-Hanson solitons. This is in
contrast to the situation for the Kaluza-Klein monopole, in
which it has been shown that there are no static monopole
solutions to the five-dimensional Einstein equations with a
cosmological constant that reduce to the asymptotically
flat Kaluza-Klein monopole [5]. The total energy of an EH
soliton is negative, though bounded from below, consistent
with earlier arguments [2].

EH solitons are natural (five-dimensional) generaliza-
tions of the EH metric that can be derived from a set of
inhomogeneous Einstein metrics on sphere bundles fibered
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over Einstein-Kahler spaces that were recently obtained
[3,6]. Unlike the four-dimensional case, a Lorentzian sig-
nature is possible, thereby yielding a nonsimply connected
background manifold for the CFT boundary theory.

To obtain the metric, we begin with the five-dimensional
generalization [3] of the Taub-NUT metric,

ds2 � �F����d�� 2n cos���d�	2 �
d�2

F���

� ��2 � n2��d�2 � sin���2d�2� � �2dz2; (1)

where the U�1� fibration is a partial fibration over a two-
dimensional subspace of the three-dimensional base space.
The function F��� is

F��� �
4m‘2 � 2n2�2 � �4

‘2��2 � n2�
; (2)

with m a constant of integration. The condition n2 � ‘2=4
must hold for this to satisfy the 5D Einstein equations with
positive cosmological constant � � 6=‘2. Because of this,
the metric (1) does not have a sensible �! 0 limit. In
order to avoid singularities at � � 0; �, the coordinate �
must be identified with period 8�n, yielding a spacetime
with closed timelike curves.

We can obtain a solution with negative cosmological
constant � � �6=‘2 through a judicious choice of ana-
lytic continuations z! it, �! 2n , ‘! i‘, yielding the
metric

ds2 � ��2dt2 � 4n2 ~F����d � cos���d�	2

�
d�2

~F���
� ��2 � n2�d�2

2; (3)

~F��� �
�4 � 4m‘2 � 2n2�2

‘2��2 � n2�
; (4)

where d�2
2 is the metric of the unit 2-sphere. By making

the further transformations

�2 � r2 � n2; m �
‘2

64
�

a4

64‘2 ; (5)

and then setting r! r=2, t! 2t=‘, we obtain

ds2 � �g�r�dt2 �
r2f�r�

4
�d � cos���d�	2

�
dr2

f�r�g�r�
�
r2

4
d�2

2;

g�r� � 1�
r2

‘2 ; f�r� � 1�
a4

r4 ; (6)

which solves Einstein’s equations with negative cosmo-
logical constant � � �6=‘2. Analytically continuing ‘!
i‘ will turn (6) into a metric solving Einstein’s equations
with a positive cosmological constant.
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The metric (6) provides us with a new means of obtain-
ing the Eguchi-Hanson metric in four dimensions. In the
‘! 1 limit, the metric (6) yields the Eguchi-Hanson
metric

ds2 �
r2

4
f�r��d � cos���d�	2 �

dr2

f�r�
�
r2

4
d�2

2 (7)

as a t � constant hypersurface. Note that the transforma-
tions (5) are crucial in obtaining this result; the metric (1)
becomes degenerate in the ‘! 1 limit.

The metric (6) solves the Einstein equations with a
negative (positive) cosmological constant � � 
6=‘2

(or the vaccum equations when ‘! 1). We call the
metrics with �< 0 Eguchi-Hanson solitons, since they
bear an interesting resemblance to the EH metric in four
dimensions and have a solitonlike character similar to
that of the AdS soliton [7]. However, unlike the four-
dimensional case, a Lorentzian signature is possible,
and, unlike the metric (1), there are no closed timelike
curves (and no horizons when �< 0). Both the Ricci
and the Kretschmann scalars are easily seen to be free
of singularities.

However, stringlike singularities can arise at r � a and
must be dealt with separately. These can be eliminated in
the usual way. Consider the behavior of the metric (6) as
r! a. Regularity in the �r;  � section implies that  has
period 2�=

���������
g�a�

p
, and elimination of string singularities at

the north and south poles �� � 0; �� implies that  has
period 4�

p , where p is an integer. This implies in the
asymptotically AdS case that

a2 � ‘2

�
p2

4
� 1

�
; (8)

with p � 3, yielding in turn that a > ‘.
We turn now to a computation of the energy of the EH

soliton. Employing the boundary-counterterm method [8–
12], we consider the general gravitational action and add to
it the counterterm action [13], which depends only on
quantities intrinsic to the boundary and, hence, leaves the
equations of motion unchanged; it serves to cancel the
divergences of the usual bulk/boundary actions. In five
dimensions, it is

I � �
1

16�G

�Z
M
d5x

�������
�g
p

�R� 2�� � 2
Z
@M

d4x
����
�
p

�

�
2

‘

Z
@M

d4x
����
�
p

�
�3�

‘2

2
R̂
��
;

where � is the induced metric on the boundary whose
extrinsic/intrinsic curvature scalars are, respectively, �
and R̂. A conserved charge associated with a Killing vector
� at infinity can be calculated using the relationship

D � �
I

�
dd�1Sa�bTeff

ab ; (9)
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where Teff
ab is obtained by varying the full action (includ-

ing counterterms, up to the appropriate dimension—
see Refs. [10,13] for its explicit form) with respect to
the induced boundary metric, and dd�1Sa is the
�d� 1�-dimensional surface element density.

For asymptotically AdS spacetimes, D� is the conserved
mass when �a is a timelike-Killing vector; an analogous
result holds the asymptotically dS case [12]. Thus, we find
from the counterterm method that the conserved mass (or
total energy) is

M �
��3‘4 � 4a4�

32G‘2p
�
�3‘4 � 4a4�N2

16‘5p
; (10)

where the second equality occurs because we can relate the
parameters of the gravity theory in the bulk to those of the
CFT on the boundary, G � �‘3=�2N2�. It is straightfor-
ward to show that this is equal to the Euclidean action
multiplied by the inverse of the (arbitrary) period of the
Euclidean time parameter, yielding a solution with zero
entropy, as expected for a horizonless metric.

We can compare the result (10) with that of the field
theory on the boundary of the AdS5 orbifold. Since the
local geometry is unchanged (with only the volume of the
S3 becoming that of S3=�), the calculation is the same as
that for the AdS5 case [14]. Rescaling the AdS orbifold
metric by a factor of r2=‘2, as r! 1 we find the metric of
the conformal field theory

ds2 � �dt2 �
‘2

4
�d � cos���d�	2 �

‘2

4
d�2

2; (11)

which has a vanishing Weyl tensor. The stress tensor is,
therefore, that of a field theory on a conformally flat space-
time in four dimensions whose expectation value hT̂sabi is a
known quadratic function of the curvature with coefficients
dependent upon the field content of the theory [15]. The
energy is then given by

E �
X

s�0;1=2;1

ns
Z

�
d3x

����
�
p

NlphT̂
s
abi�

aub; (12)

where the sum is over the scalar, spinor, and vector fields of
the field theory and where � 2 �0; �	, � 2 �0; 2�	, and
 2 �0; 4�=p	. For N � 4 super Yang-Mills theory, there
are 6 scalars, 4 spinors, and 1 vector field [14]; inserting
this information into (12), we obtain

E �
3N2

16‘p
: (13)

Note that this matches the conserved mass given by (10)
with a � 0. A straightforward computation using a
Noether charge approach [16,17] of the energy of the
soliton (6) relative to the AdS orbifold yields the difference
M� E as expected. Note that, going p times along the  
direction, the situation is the same as if the asymptotic
space were S3 (and not S3=�), for which fermions are
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periodic. Hence, pmust be even when fermions are present
in the CFT.

We see that the energy (10) of the EH soliton is lower
than that of the AdS5=� orbifold and is, in fact, negative
and finite once condition (8) is taken into account. Indeed,
we have

E EH�soliton � �
�p4 � 8p2 � 4�N2

64‘p
(14)

for any given integer p � 3. We conjecture that the EH
soliton is the state of lowest-energy in its asymptotic class
in both 5D Einstein gravity with a negative cosmological
constant and in type IIB supergravity in ten dimensions.
Indeed, the AdS/CFT correspondence (along with the ex-
pected stability of the gauge theory) suggests that any
metric solving the 5D Einstein equations that has the
same boundary conditions as the EH soliton will have a
greater energy.

We now show that our conjecture holds perturbatively
for all metrics of the form

g	
 � �g	
 � h	
;

where �g	
 is the EH solition (6) and the perturbation obeys
the falloff conditions

h	
 � O�r�2�; h	r � O�r�4�;

hrr � O�r�6�; 	; 
 � r:

Employing the method of Abbott and Deser [18], the
Hamiltonian H on a time-symmetric slice to second order
in the perturbation hij�i; j � t� is

H � �N
�

1���
�g
p pijpij �

���
�g

p

�

�
1

4
� �Dkhij�2 �

1

2

�4�
�Rijklhilhjk �

1

2

�4�
�Rijhikhj

k
��
;

(15)

where we have used the same notation, gauge, and con-
straint equations as in Ref. [7].

As the momenta make a positive contribution to the
energy density, we need calculate only the gradient energy
density � �Dkhij�

2 (also positive) and the potential energy
density U � 1

2
�4� �Rijklhilhjk �

1
2
�4� �Rijhikh

k
j . We evaluate the

latter by considering it as a matrix contracted with two 9-
vectors whose components are hil. We find that there exists
a negative eigenvalue for sufficiently small r. Writing the
perturbation as hik � A�r�~hik, where A�r� is a profile func-
tion maximized at r � a and ~hik is the eigenvector asso-
ciated with the negative eigenvalue, we find that the
negative potential energy U is not outweighed by a simple
estimation of the gradient energy density (given by divid-
ing the maximum of the profile function by the proper
distance over which U is negative). This situation—quite
unlike that for the AdS soliton [7]—forces us take into
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account the complete expression

T � fĥab@cA�r� � A�r�ĥab;cg
2 (16)

for the gradient energy term. From this, we find that the
gradient energy density always outweighs the potential
energy density, indicating that the EH soliton is perturba-
tively stable for all values of p relative to all other metrics
with the same boundary conditions.

We have also found �d� 1�-dimensional generalizations
of the EH solition (6). These are

ds2 � �g�r�dt2 �
�
2r
d

�
2
f�r�

�
d �

Xk
i�1

cos��i�d�i

�
2

�
dr2

g�r�f�r�
�
r2

d

Xk
i�1

�d�2
i � sin2��i�d�2

i �; (17)

where

g�r� � 1

r2

‘2 ; f�r� � 1�
�
a
r

�
d
; (18)

and the cosmological constant � � �d�d� 1�=�2‘2�. We
shall discuss their derivation and properties more fully in a
subsequent paper [19].

The EH soliton forms a new one-parameter family of
solutions (indexed by p) to the 5D Einstein equations (and,
hence, low-energy string theory) with a negative cosmo-
logical constant that asymptotically approach AdS5=�.
These solutions are perturbatively stable and of lower
energy than AdS5=�. It is natural to consider the extent
to which the EH soliton has properties similar to that of the
AdS soliton. The latter metric has been shown under
certain conditions to be a unique lowest mass solution for
all spacetimes in its asymptotic class [20]. It also satisfies
holographic causality [21] and can undergo phase transi-
tions to AdS black holes with Ricci-flat horizons [22].
Which of these properties are shared by the EH soliton
remains an interesting subject for future work.
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