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Entanglement Conditions for Two-Mode States
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We provide a class of inequalities whose violation shows the presence of entanglement in two-mode
systems. We initially consider observables that are quadratic in the mode creation and annihilation
operators and find conditions under which a two-mode state is entangled. Further examination allows us to
formulate additional conditions for detecting entanglement. We conclude by showing how the methods
used here can be extended to find entanglement in systems of more than two modes.
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Entanglement has proven to be a valuable resource in
quantum information processing. However, determining
whether or not a state is entangled is often far from simple.
Methods such as the Peres-Horodecki positive partial
transpose condition [1], entanglement witnesses [2], and
hierarchies of entanglement conditions [3] exist, but are
not always straightforward to apply. In particular, for sys-
tems with continuous degrees of freedom, such as particle
position or momentum or the quadrature components of
field modes, the number of available criteria for detecting
entanglement is very limited. Each of the known criteria
detects only a subset of the set of entangled states. In many
cases, these criteria are in the form of inequalities [4–9]. In
general, they provide only sufficient conditions for detect-
ing entanglement [10]. The utility of most of these inequal-
ities is, however, limited for non-Gaussian bipartite states.
For example, none of these conditions can detect the fact
that the state �j0iaj1ib � j1iaj0ib�=

���
2
p

is an entangled
state, though it should be pointed out that it can be shown
to be entangled by the application of other entanglement
tests [1,11]. This indicates that there is a need to find
additional simple and, ideally, experimentally accessible
conditions that can establish whether a state is entangled.

In this Letter we provide a class of inequalities for
detecting entanglement. These inequalities arise from ex-
amining uncertainty relations. The use of uncertainty rela-
tions to establish conditions for detecting entanglement has
been pursued by Hofmann and Takeuchi [12] and by
Gühne [13]. We begin by examining observables that are
quadratic in the mode creation and annihilation operators.
These observables were used previously to define sum and
difference squeezing, forms of higher-order squeezing
[14]. These quantities and their uncertainties are, in prin-
ciple, measurable, so that the conditions we derive could be
used in a laboratory to detect entanglement. We find that
the conditions formulated in terms of these variables lead
to a host of other conditions for detecting entanglement.
Finally, we briefly discuss how some of these conditions
can be extended to detect entanglement in systems con-
sisting of more than two modes.
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Consider two modes of the electromagnetic field, where
a and ay are the annihilation and creation operators of the
first mode and b and by are the annihilation and creation
operators of the second. We define the operators L1 �
aby � ayb and L2 � i�aby � ayb�. Operators, propor-
tional to these, along with one proportional to the operator
L3 � aya� byb, form a representation of the su(2) Lie
algebra; i.e., Ji � Li=2 (i � 1–3) satisfy the commutation
relations �Jk; Jm� � i�kmnJn. Entanglement conditions ex-
pressed in terms of angular momentum operators have
been derived by a number of authors [15–18]. It follows,
on calculating the uncertainties of these variables and add-
ing them, that

��L1�
2 � ��L2�

2 � 2�h�Na � 1�Nbi � hNa�Nb � 1�i

� 2jhabyij2�; (1)

where Na � aya and Nb � byb. Now suppose that the
state we are considering is a product of a state in the a
mode and another state in the bmode. Then the expectation
values in the above expression factorize into products of
a-mode and b-mode expectation values. We then have that

��L1�
2���L2�

2 � 2�h�Na� 1�ihNbi

� hNaih�Nb� 1�i� 2jhaihbyij2�: (2)

Noting that the Schwarz inequality implies that jhaij2 �
hNai and jhbij2 � hNbi, we find that for a product state

��L1�
2 � ��L2�

2 	 2�hNai � hNbi�: (3)

This inequality can be extended to any separable state by
using a result of Hofmann and Takeuchi [12]. For a density
matrix � �

P
mpm�m and a variable S, we have that

��S�2 	
X
m

pm��Sm�2; (4)

where ��Sm�2 is the uncertainty of S calculated in the
state �m. If the original state � is separable, then all of
the states �m can be taken to be product states for which
the inequality in Eq. (3) holds. Then, Eq. (4) implies
that Eq. (3) holds for the state � as well. Hence, Eq. (3)
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is valid for any separable state. It can easily be shown that
Eq. (3) is violated for the Bell state j 01i � �j0iaj1ib �
j1iaj0ib�=

���
2
p

.
We can gain more insight if we consider the uncertainty

relation obeyed by L1 and L2,

��L1���L2� 	 jhNa � Nbij: (5)

This implies that

��L1�
2 � ��L2�

2 	 2jhNa � Nbij: (6)

Comparing this result, which holds for any state, to Eq. (3),
which holds for separable states, we see that the right-hand
side of Eq. (6) is always less than or equal to that of Eq. (3).
Consequently, there are states that violate Eq. (3) while
satisfying Eq. (6), and the state in the previous paragraph is
an example of such a state.

It is also worthwhile to see how the condition in Eq. (3)
performs for a mixed state. Consider the state

� � sj 01ih 01j �
1� s

4
P01; (7)

where 0 � s � 1 and P01 is the projection operator onto
the space spanned by the vectors fj0iaj0ib; j0iaj1ib;
j1iaj0ib; j1iaj1ibg. We find that ��L1�

2 � ��L2�
2 �

3� s� s2 and 2�hNai � hNbi� � 2 , so that violation of
the inequality in Eq. (3) shows that the state is entangled if
s2 � s� 1> 0, or 1 	 s > �

���
5
p
� 1�=2.

An examination of the condition in Eq. (3) shows us that
the state is entangled if

hNaNbi< jhabyij2: (8)

Note that the Schwarz inequality implies that

jhabyij2 � hNa�Nb � 1�i; (9)

so there are states that can satisfy the inequality in Eq. (8).
This condition suggests that there is a family of similar
conditions for detecting entanglement, where instead of
considering the operator aby we consider instead am�by�n.
For a pure product state we have that

jham�by�nij2 � jhamij2jhbnij2 � h�ay�mamih�by�nbni;

(10)

or, because for a product state h�ay�mamih�by�nbni �
h�ay�mam�by�nbni, it is also true that

jham�by�nij2 � h�ay�mam�by�nbni: (11)

It is this relation that will lead to a generalization of the
entanglement condition in Eq. (8), but, before it does, we
need to show that it holds for any separable state and not
just for product states. Consider the density matrix for a
general separable state given by � �

P
kpk�k, where �k is

a density matrix corresponding to a pure product state, and
pk is the probability of �k. The probabilities satisfy the
condition

P
kpk � 1. Defining A � am and B � bn, we
05050
have that

jhAByij �
X
k

pkjTr��kAB
y�j �

X
k

pk�hA
yAByBik�

1=2;

(12)

where hAyAByBik � Tr��kAyAByB�. We can now apply
the Schwarz inequality to obtain

jhAByij �
�X
k

pk

�
1=2
�X
k

pkhA
yAByBik

�
1=2

� �hAyAByBi�1=2; (13)

which shows that the inequality in Eq. (11) does, indeed,
hold for all separable states. Therefore, we can conclude
that a state is entangled if

jham�by�nij2 > h�ay�mam�by�nbni: (14)

Let us now turn our attention to the variablesK1 � ab�
ayby and K2 � i�ayby � ab�. One-half times these opera-
tors along with one-half times the operator K3 � aya�
byb form a representation of the su(1,1) Lie algebra. As
before, we would like to find inequalities involving these
variables that tell us whether a two-mode state is entangled
or not. The strategy that we employed before, adding the
uncertainties and assuming the expectation values can be
factorized, leads to the inequality for product states
��K1�

2 � ��K2�
2 	 2�hNai � hNbi � 1�. However, if we

employ the uncertainty relation, �K1�K2 	 hNa � Nb �
1i, we find that the above inequality holds for all states, and
is therefore not useful for determining whether a state is
entangled or not.

We can obtain something useful if we pursue a different
path. The guiding idea is that the ‘‘eigenstates’’ (the reason
for the quotation marks is that these states are, in general,
not normalizable, and hence do not lie in the Hilbert space
of two-mode states) of operators such as K1 and K2 are
highly entangled. States whose uncertainty in one of these
variables is small will be close to one of these eigenstates,
and will also be entangled. Therefore, for a state to be
separable, its uncertainty in one of these variables must be
greater than some lower bound. What we shall show is that,
in the case of K1 and K2, that lower bound is 1.

In order to make the discussion more general, define the
variable

K��� � ei�ayby � e�i�ab: (15)

Note that K�0� � K1 and K��=2� � K2. We then have that

��K����2 � h�ayby � haybyi��ab� habi�i

� h�ab� habi��ayby � haybyi�i

� e2i�h�ayby � haybyi�2i

� e�2i�h�ab� habi�2i: (16)

We again employ the Schwarz inequality to give us
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jh�ab� habi�2ij � �h�ab� habi��ayby � haybyi�i


 h�ayby � haybyi��ab� habi�i�1=2:

(17)

This gives us that

��K����2 	 �h�ab� habi��ayby � haybyi�i1=2

� h�ayby � haybyi��ab� habi�i1=2�2

	 ��h�Na � 1��Nb � 1�i � jhabij2�1=2

� �hNaNbi � jhabij
2�1=2�2: (18)

This inequality is valid for all states, but if the state is a
product state this becomes

��K����2 	 ��h�Na � 1�ih�Nb � 1�i � jhaihbij2�1=2

� �hNaihNbi � jhaihbij
2�1=2�2: (19)

Now let us examine the quantity on the right-hand side
of the above inequality. Setting x � hNai, y � hNbi, and
z � jhabij2, we want to find the minimum of the function

F�x; y� �
���������������������������������������
�x� 1��y� 1� � z

q
�

��������������
xy� z
p

; (20)

in the region xy 	 z 	 0. By setting @F=@x and @F=@y
equal to zero, we find that F�x; y� has no local maxima or
minima in the region of interest, so that the minimum of the
function must lie on the boundary. This means we have to
look at how F behaves on the curve xy � z and as x and y
go to infinity. On the curve xy � z we find that

F�x; z=x� �
�
x�

z
x
� 1

�
1=2
	 1: (21)

Now let us consider what happens as x; y! 1. We first
note that

F�x; y� �
Z �x�1��y�1��z

xy�z
du

1

2
���
u
p 	

x� y� 1

2
���������������������������������������
�x� 1��y� 1� � z

p :

(22)

Continuing, we find

F�x; y� 	
x� y� 1

2
������������������������������
�x� 1��y� 1�

p �
�x� 1� � �y� 1� � 1

2
������������������������������
�x� 1��y� 1�

p
	

1

2

� ������������
x� 1

y� 1

s
�

������������
y� 1

x� 1

s
�

1������������������������������
�x� 1��y� 1�

p �

	 1�
1

2
������������������������������
�x� 1��y� 1�

p : (23)

Therefore, we can conclude that as x; y! 1 we have
that F�x; y� 	 1. Finally, this gives us ��K���� 	 1 for
a product state, and the argument in [12] [see Eq. (4)]
then implies that it is true for any separable state. Con-
sequently, if for some state ��K����< 1, we can conclude
it is entangled.
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Both K1 and K2 are measurable. If the two modes are
sent into a nonlinear crystal, to lowest order in the non-
linearity, the quadrature components of the mode corre-
sponding to their sum frequency are proportional to K1 and
K2 [14]. These quadratures can then be determined by
means of homodyne measurements.

Let us exhibit a state for which �K1 < 1. Consider the
state

j i �
1����
�
p

X1
n�0

��1�n
xn���������������

2n� 1
p j2niaj2nib; (24)

where 0 � x < 1 and

� �
1

2x
ln
�
1� x
1� x

�
: (25)

For this state we find that habi � 0, and

h ja2b2j i � �
1

�

X1
n�0

�2n� 2��2n� 1�

��2n� 3��2n� 1��1=2
x2n�1;

h j�Na � 1��Nb � 1�j i �
1� x2

��1� x2�2
;

h jNaNbj i �
3x2 � 1

��1� x2�2
� 1;

(26)

which implies

��K1�
2 � 1�

4x2

��1� x2�2
�

2

�



X1
n�0

�2n� 2��2n� 1�

��2n� 3��2n� 1��1=2
x2n�1: (27)

We can find a lower bound for the sum in the above
equation, which gives us an upper bound for ��K1�

2. We
obtain

��K1�
2 � 1�

4

�

�
�

1���
3
p x�

x2�1� x�2� x2��

�1� x2�2

�
: (28)

Noting that near x � 0 we have that � is approximately
equal to 1� �x2=3� we find that near x � 0 the right-hand
side of the above equation behaves like 1� �4x=

���
3
p
�, so

that �K1 for this state can, indeed, be less than 1.
In analogy to what was done for the su(2) variables it is

possible to find other relations that must be obeyed by
separable states. For example, in the case of product states
we have that

jhabij � jhaihbij � �hNaihNbi�1=2; (29)

and what we now do is show that this inequality is obeyed
by all separable states. Therefore, a violation of this in-
equality implies that the state is entangled. In fact, we show
that for any positive integers m and n, a separable state
must satisfy the condition
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jhambnij � �h�ay�mamih�by�nbni�1=2: (30)

Clearly Eq. (29) is a special case of Eq. (30).
As before, consider the density matrix of a general

separable state � �
P
kpk�k, where �k is a density matrix

corresponding to a pure product state, and pk is the proba-
bility of �k. Again, setting A � am and B � bn, we have
that

jhABij2 �
X
k;l

pkpljTr��kAB�jjTr��lB
yAy�j

�
X
k;l

pkpl�hA
yAikhB

yBikhA
yAilhB

yBil�
1=2: (31)

In terms of the quantities hAyAik � Tr�AyA�k� � xk and
hByBik � Tr�ByB�k� � yk, this inequality can be rewrit-
ten as

jhAByij2 �
X
k

p2
kxkyk � 2

X
k>l

pkpl�xkykxlyl�1=2: (32)

Next we consider hAyAihByBi �
P
kp

2
kxkyk �P

k>lpkpl�xkyl � xlyk�. As xkyl � xlyk 	 2�xkykxlyl�1=2,
we see that the inequality in Eq. (30) holds for all separable
states; i.e., if a state violates this inequality, it must be
entangled.

Returning to the case m � n � 1, we have that for a
general state jhabij � �hNa � 1ihNbi�1=2, which suggests
that there are states that do violate the inequality in
Eq. (29). An example of one that does is the two-mode
squeezed vacuum state

j i � �1� x2�1=2
X1
n�0

xnjniajnib; (33)

where 0 � x � 1. For this state we find that �hNai

hNbi�1=2 � x2=�1� x2�< x=�1� x2� � jhabij, so that we
conclude from Eq. (29) that this state is entangled.

We have derived a family of entanglement conditions for
two-mode states. They enlarge the set of states that can be
shown to be entangled by means of relatively simple con-
ditions. Some of these conditions provide, in principle,
measurable tests of entanglement; that is, all of the quan-
tities appearing in the inequalities can be measured in the
laboratory.

In closing, we point out that the methods employed
here are not confined to demonstrating entanglement
in two-mode states. To show this we briefly consider a
three-mode example. A more thorough analysis will be
left to future work. Consider three modes whose annihila-
tion operators are a, b, and c. For a state that is a tensor
product of individual states for each of the modes, we have
that jhabycyij � jhaihbihcij � �hNaihNbihNci�

1=2 �

hNaNbNci1=2. For a state that is completely separable
in the three modes, that is one that can be expressed
as � �

P
kpk�ak � �bk � �ck, we find that jhabycyij �

PRL 96, 050503 (2006)
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kpkjhaikhbikhcikj, which implies that

jhabycyij �
X
k

pk�hNaNbNcik�
1=2

�

�X
k

pk

�
1=2
�X
k

pkhNaNbNcik

�
1=2

� hNaNbNci
1=2; (34)

where the next to last step follows from the Schwarz
inequality. If a state is completely separable, it must obey
this inequality, and, therefore, if the inequality is violated,
the state will be entangled. An example of a state that does
violate this inequality is given by j i � �j1iaj0ibj0ic �
j0iaj1ibj1ic�=

���
2
p

, which is a kind of GHZ state. In par-
ticular, for this state hNaNbNci � 0, and jhabycyij �
1=2, which clearly violates the inequality jhabycyij �
hNaNbNci

1=2. Therefore, we see that the types of inequal-
ities developed here can be extended to study the multi-
partite entanglement of continuous-variable systems.
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research is supported by the Air Force Office of Scientific
Research, DARPA-QuIST, and the TAMU Telecom-
munication and Informatics Task Force (TITF) initiative.

Note added.—After submission of this Letter, publica-
tions on very similar topics by Agarwal and Biswas [19]
and Shchukin and Vogel [20] have appeared.
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