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Phase-Controlled Collapse and Revival of Entanglement of Two Interacting Qubits
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We demonstrate the strong dependence of the entanglement dynamics of two distinguishable qubits in a
trap on the relative phase of the pulses used for excitation. We show that the population and entanglement
exhibits collapses and full revivals when the initial distribution of phonons is a coherent state.
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FIG. 1. Schematic of a four-level system for two qubits with
distinguishable interactions in a linear trap.
One of the most promising systems to build a quantum
computer is based on trapped ions [1,2]. Recently, several
schemes of coherent manipulation of the quantum states of
trapped ions have been developed [3–6]. Here we consider
a scheme for creating and controlling entanglement of two
qubits in a linear trap, or in other words, two two-level
quantum systems coupled to a harmonic bath. In our setup,
the two-qubit system must have independently addressable
transitions. There are two different strategies to create the
entanglement: by individually addressing each system or
by means of simultaneous indistinguishable excitation.
Both cases were found promising, since even hot ions
were shown to be useful for quantum computation [7–9],
owing to the independence of the effective coupling on the
vibrational (phonon) quantum number.

The basic system underlying the two-qubit manipulation
involves a four-level system in closed-loop configuration,
shown in Fig. 1. When each coupling can be addressed
independently, new forms of control are possible. Recently,
we have shown that the relative phase between the pulses
can be used to control population dynamics as well as to
prepare entangled states [10], by virtue of quantum inter-
ference between two pathways connecting the initial and
target states [11]. Obviously, population dynamics and
entanglement depend on many parameters of the system.
In most experimental setups (for instance, trapped ions) the
system is addressed by means of fully overlapping cw
fields, so that the Rabi flopping depends only on the pulse
area. Then, it is still possible to gain a higher finesse in the
manipulation of the quantum system by introducing an
externally controllable relative phase. In this work we
show that the relative phase between the pulses has far
more important influence on the population dynamics and
entangled state manipulation when the qubits are coupled
to a harmonic trap. For properly chosen relative phases one
can observe either Rabi oscillations according to the
Mølmer-Sørensen scheme [7–9] (the relative phase is
zero) or collapse and revival phenomena, as in the well-
known Jaynes-Cummings model [12,13] (the phase is not
equal to zero). Additionally, the phase could be used to
control the time of operation of quantum gates.
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Let us consider the dynamics of two distinguishable
qubits in a one-dimensional harmonic trap. We assume
that the two additional degrees of freedom are suppressed,
and we neglect decoherence effects caused, for instance, by
spontaneous decay. The collective motion of, e.g., atoms or
ions will be defined by an effective harmonic trap potential,
with the Hamiltonian
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where � is the frequency of the vibrational motion, E�i�2 is
the transition energy in the i qubit (for instance, the excited
internal state of the ions or atoms), �zi are Pauli matrices,
and ây, â are the vibrational ladder operators (all parame-
ters in atomic units, @ � 1). We allow here interaction
between the qubits, which in a simple case can be treated
as an effective spin-spin coupling Hamiltonian, where J is
the coupling constant.

The interaction of the qubits with the external fields can
be written in the following form: Vi � �

P
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cos�!jt��j � �j�ây � â���xi � H:c:, where !j;�j

are the laser frequency and phase, �j�t� is the Rabi fre-
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������������
4m!t
p

is the Lamb-Dicke parame-
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ter,!t is the trap frequency,m is the ion mass, and kj is the
laser wave vector.

Owing to the interaction between the qubits, the tran-
sition frequencies of the four-level system are different
in general, depending on the specific system realiza-
tion. As particular examples, the interaction between
qubits gives rise to blockade effects known as dipole
blockade in atomic systems [15] and it also takes place
in semiconductor quantum dots [16]. In a very general
approach, we consider here excitation of the trapped
two-qubit system by four off-resonant fields driving the

following transitions: j00ni !
�1�t�
j01n� 1i !

�3�t�
j11ni and

j00ni !
�2�t�
j01n� 1i !

�4�t�
j11ni (Fig. 1), where ‘‘0’’ or ‘‘1’’

denotes the qubit state and n is the vibrational quantum
number. The Hamiltonian for the total wave function j i �
a1j00ni � a2j11ni � b1j01n� 1i � b2j10n� 1i in the
rotating wave approximation has the form
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where �i;n � �i�i;0�t�e
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, and �1;2 are the detunings
including energy level shifts due to spin-spin interaction.

By choosing the phases b1 ! b1e
�i�1 , b2 ! b2e

�i�2 ,
and a2 ! a2e�i��1��3�, after adiabatic elimination (off-
resonant excitation) of the bi amplitudes, we obtain the
following equation in the case of completely overlapped
pulses, �i;0�t� � �0�t�:
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where � � �4 ��2 ��1 ��3 is the effective phase
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FIG. 2. Population inversion dynamics, W�t�, of the qubits at vario
with average number �n � 25; (b) for the initial thermal distribution
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difference between the two distinct two-photon couplings,
and we assume �1 
 �2 � �.

Finally, choosing detunings as �2���1��0 we obtain

H � �
�2�2

0�t�
4�0

1 i�	

�i� 1

� �
; (4)

where � � ��2n� 1� sin��=2� � i cos��=2��.
In Eq. (4) the ac Stark shifts do not depend on the

vibrational quantum number, but the effective Rabi fre-
quency is still a function of n. At � � 0, Eq. (4) reprodu-
ces the well-known Mølmer-Sørensen Hamiltonian of
trapped ions [7–9], while at � � � the effective Rabi
frequency is linearly proportional to 2n� 1. The coupling
between states j00ni and j11ni depends on the relative
phase, �. Only at � � 0 the coupling between the internal
states does not depend on the motional states. As a result,
one observes Rabi oscillations between the ground and the
excited electronic states even if the motional state is not a
single Fock state.

The solution of the Schrödinger equation with the
Hamiltonian of Eq. (4) for arbitrary phase is a1 �
cos�"nS�t�� and a2 � � sin�"nS�t��="n, where S�t� �
�2

R
t
0 dt

0�2
0�t
0�=4�0 and "n��1�4n�n�1�sin2��=2��1=2.

To demonstrate the effect of the relative phase we now
consider the cw regime, that is, when �0�t� � �0 is time
independent. In general, when the initial state of the pho-
nons is not a single Fock state, one has to average the
results over the corresponding state distribution. Here we
consider two particular situations: coherent and thermal
state of the phonons. Averaging using the coherent state
distribution, Pc�n� � e� �n �nn=n!, where �n is the average
number of phonons, we obtain for the population inversion

W�t� �
X1
n�0

Pc�n��ja1j
2 � ja2j

2� �
X1
n�0

Pc�n� cos�2gt"n�;

(5)
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us relative phases, �: (a) for the initial coherent state of phonons
of phonons with average number �n � 5.
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where g � �2�2
0=4�0. It can be seen that at � � 0 the

dynamics of the system does not depend on the vibrational
quantum number, as it was shown in Refs. [7–9], and we
observe simple Rabi oscillations with frequency defined by
2g. However, in general the Rabi frequencies depend on
the vibrational quantum number n, Gn � 2g"n.

To our knowledge, there is no general analytic solution
for the summations in Eq. (5). However, in the limit of
�n� 1 the summation can be done exactly, and we obtain
the analytic form for population inversion W�t� �
e�2 �nsin2��=2� cos� �n sin��, where � � 4gt sin��=2�. The en-
velope function, e�2 �nsin2��=2�, shows that all revivals in this
model imply the exact regeneration of the initial value, that
is, full revivals.

Using the analytic expressions for the probability am-
plitudes [Eq. (5)], we estimate the time period of the Rabi
oscillations tR, the collapse time tc, and the interval be-
tween revivals tr [17]. tR is defined by the inverse of the
Rabi frequency at n � �n, G �n � 2g" �n. Therefore, we ob-
tain tR �G�1

�n � �2g" �n�
�1. In the limit �n� 1, one obtains

tR � 1=4g �n sin��=2�.
The Rabi oscillations take place until a collapse

time, when the oscillations related to different vibrational
states become uncorrelated. Since the root-mean-
square deviation for the coherent state h�ni is equal to���

�n
p

, we estimate the collapse time using the condition
tc�G �n�

��
�n
p �G �n�

��
�n
p � � 1. Finally, for �n� 1, we obtain

tc � �8g
���
�n
p

sin��=2���1.
The revival of the oscillations takes place when the

phases of the neighboring n’s differ by 2�. Using G �n we
find for the time interval between revivals tr �
2�m=�G �n �G �n�1� � �m=�2g sin��=2��, where m �
1; 2; . . . . Figure 2(a) shows the population dynamics for
different values of the relative phase after averaging over
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FIG. 3. Concurrence C�t� (solid line) and Renyi entropy P�t� (dash
various relative phases, �: (a) for the initial coherent state of pho
distribution of phonons with average number �n � 5.
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the coherent state distribution. The results are in perfect
agreement with our estimates above.

In the case of a thermal distribution of the phonons, we
have to perform the averaging over the one-mode Bose-
Einstein distribution, Pt�n� � �nn=�1� �n�n�1, where �n is
the average number of phonons. The analysis follows as
previously, although the delocalization of the thermal dis-
tribution in terms of vibrational quantum number n (the
main difference between coherent and thermal states)
makes it impossible, in general, to apply any suitable
approximation, even in the limit of �n� 1.

Figure 2(b) shows the population dynamics for different
values of the relative phase after averaging over the ther-
mal distribution. Here again, we observe Rabi oscillations
with the frequency 2g at � � 0, but the population dy-
namics becomes absolutely uncorrelated at � � 0 on a
longer time scale. It is interesting to see that as �! �,
the periodicity of the population dynamics (with frequency
2g) is again restored. The time between peaks does not
depend on the average number of phonons, and we observe
perfect revival of the envelope function. However, the
width of the peaks decreases when the average number
of phonons increases.

To quantify the degree of entanglement, we construct the
density matrix 	 and calculate the concurrence C�t� [18–
22]. According to the general expression for the case of
two qubits A and B, C�t� � max�0;
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Figure 3 shows the dynamics of entanglement in the

two-qubit system at various values of the relative phase.
For coherent states the concurrence fully revives at any
value of the relative phase [Fig. 3(a)]. The relative phase
controls the revival time and the width of the reviving
comb. The collapse of population inversion correlates
0

0.5

1

C(
t),

 P
(t)

0

0.5

1

C(
t),

 P
(t)

0

0.5

1

C(
t),

 P
(t)

0

0.5

1

C(
t),

 P
(t)

0 2 4 6 8 10
time

0

0.5

1

C(
t),

 P
(t)

0 2 4 6 8 10
time

0

0.5

1

C(
t),

 P
(t)

φ=0

φ=π

φ=π/4

φ=π/90

φ=π/5

φ=π/2

(b)

ed line) in a system of two trapped qubits as a function of time at
nons with average number �n � 25; (b) for the initial thermal
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with the collapse of the concurrence, clearly revealing the
decoherence of the system.

The degree of entanglement for the case of the thermal
distribution behaves as in the coherent state at � � 0, or at
very small values of the relative phase [compare Figs. 3(a)
and 3(b)]. However, for larger � the lack of correlation in
the population dynamics is reflected in the concurrence. In
this case, the correlation between the population inversion
dynamics and the concurrence is less obvious than previ-
ously. In fact, the concurrence never reaches unity in
contrast to the population inversion and the Renyi entropy,
P�t� � Tr�	2�, which can be used as a measure of system
purity. For the case of coherent states the Renyi entropy
revives completely [see Fig. 3(a)], in agreement with our
estimations. An interesting fact is that even for the thermal
distribution at � � � the entropy revives completely; that
is, the system ‘‘becomes’’ pure [Fig. 3(b)].

In conclusion, we have demonstrated the fundamental
role of the relative phase of the fields for creating entan-
glement in a two distinguishable qubit system of trapped
atoms or ions. We have shown that, only in the case of zero
relative phase, the dynamics of the system exhibits Rabi
oscillations and does not depend on the motional states. In
general, the dynamics is qualitatively different. There are
collapses and revivals in the dynamics of the internal states
of the qubits when the phonons of the trap are in a coherent
state, and the dynamics is chaotic for a thermal distribution
of the phonons, except when the relative phase is zero or�.
Since coherent distributions experience full revivals with
phase-controlled Rabi frequencies, we believe they could
be used as two-qubit gates, with the additional advantage
that the speed of the gate could be easily controlled.

The phase-induced collapse and revival of entanglement
could be experimentally observed with current technology.
The most difficult part in the setup is the ability to address
independently the transitions in the qubit system. We be-
lieve that the first potential candidates are trapped ions in
inhomogeneous magnetic fields [23,24] and Rydberg
atoms in ponderomotive optical lattices [25]. The energy
shifts due to the effective spin-spin coupling can vary from
several Hz, as in the modified ion trap proposed by Mintert
and Wunderlich [23], up to tens of MHz for Rydberg atoms
[25]. By choosing magnetic sublevels of the ions (atoms)
for the qubit, the effect of decoherence (spontaneous de-
cay) can be neglected on the time scale of an order of few
milliseconds or even seconds [7,8]. Using Rabi frequencies
�100 kHz we predict up to six almost perfect revivals
during 20–22 �s for a coherent state of phonons with
average number �n � 10. Novel developments in quantum
information processing based on quantum dots and super-
conducting qubits could also have suitable parameters to
observe these effects [26]. The importance of the phase
shows that additional care should be taken over the relative
phase of the fields when the distinguishable qubits are not
05050
in a single Fock state. The phase should be locked to zero if
one wants to apply a �-pulse technique for quantum logic
operations, since even a small change in the phase intro-
duces phonon-induced decoherence in the system
dynamics.
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