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We devise a microscopic model for the emergence of a collision-induced, fermionic atomic current
across a tilted optical lattice. Tuning the—experimentally controllable—parameters of the microscopic
dynamics allows us to switch from Ohmic to negative differential conductance.
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Ultracold atoms in optical potentials provide a versatile
tool for the experimental study of many-body dynamics,
with an unprecedented degree of accuracy [1-3]. Not only
do these systems allow the faithful experimental realiza-
tion of fundamental model Hamiltonians of solid state
theory, but they also lend themselves as efficient analog
quantum simulators [4]. Beyond that, they bridge the gap
between the single particle and the thermodynamic limit: if
not now, certainly so in the near future experimentalists
will be able to load a precisely controlled number of
particles into engineered potentials, with particle numbers
tunable from one to intermediate or large values [5].
Hence, by continuously varying the system size, we will
be able to control the emergence of macroscopic, thermo-
dynamic observables from perfectly deterministic Hamil-
tonian dynamics, in experiment and theory. This holds the
potential of a much deeper and quantitative understanding
of quantum statistical laws, together with a variety of
possible applications in the context of the ever advancing
miniaturization of modern technology [6].

In the present contribution, we address a specific prob-
lem of exemplary importance within this context: the emer-
gence of a macroscopic current across a periodic potential
under static forcing. It is well known that electrons in a
perfectly periodic lattice exhibit coherent Bloch oscilla-
tions, under static forcing, and that no net transport, i.e., no
current across such lattice, occurs in the absence of any
(incoherent or dephasing) relaxation process [7]. Only the
latter will induce a net drift velocity of the electrons, giving
rise to a measurable current. While relaxation processes
due to phonon scattering or impurities are abundant yet
largely uncontrolled in solids, a clean and perfectly con-
trollable realization of this fundamental transport problem
is feasible in a quantum optical setting, where we can en-
gineer the environment: By loading spin polarized, non-
interacting fermions together with ultracold bosons into a
one-dimensional optical lattice, we establish a strictly
analogous, idealized scenario. The bosons act as a bath
for the fermions, with relaxation induced by fermion-boson
collisions.

Our results are obtained from a microscopic model for
very moderate system sizes—typically less than ten bo-
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sons interacting with a single fermion, on approximately
ten lattice sites. Yet, due to the exponential increase of the
many particle system’s Hilbert space dimension with par-
ticle number and lattice size, this is sufficient to enter the
regime of asymptotic convergence into the thermodynamic
limit [8]. Thus, we describe how a macroscopic current
emerges from perfectly Hamiltonian microscopic dynam-
ics, with all ingredients under essentially perfect experi-
mental control.
Our model Hamiltonian reads

H=Hp+ Hg + Hiy, (D

and decomposes into the (single-particle) fermionic part
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and a term which mediates the collisional interaction be-
tween fermions and bosons,
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Since we are interested in the fermionic dynamics, the
fermionic tunneling coupling Jr in (2) sets the energy
scale, and, correspondingly, i/Jp is the natural unit of
time. Equations (1)—(4) describe the dynamics of ultracold
atoms in the lowest band of a 1D lattice, assuming short
range (on-site) interaction, and tunneling coupling only
between adjacent lattice sites /. Low temperatures as well
as moderate field strengths as compared to the gap between
the lattice’s lowest and first excited bands are required, for
consistency with the single band approximation. The
single-particle ansatz for the fermionic part is justified
since the Pauli principle forbids occupation of the same
site. Our model additionally implies that only fermions
experience a static forcing F, while the bosons see a
periodic potential (period d) without static forcing. Such
a situation can be realized by a suitable choice of the
internal electronic states the fermions and bosons are ini-
tially prepared in [9].
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We impose Jg = Jp for the bosonic component and
focus on filling factors 7 = N/L ~ 1 with N bosons dis-
tributed over L lattice sites (for more than one fermion, N
represents the boson number per fermion). These filling
factors interpolate between single-particle dynamics and
the thermodynamic limit, for the lattice sizes we consider.
The above choice of parameters is in reach for state-of-the-
art experiments: Jg = J;/2 has already been realized in
experiments [10] on a mixture of “°K and ®’Rb, with J =~
0.06EpR, and experimental techniques for the relative ad-
justment of Jr and Jp are available [4,9,11]. Here, Ep =
h%k*/2m is the single photon recoil energy seen by the 4°K
atoms. With the above value of J, the relevant time scale
h/Jr = 0.3 s is easily resolved. Finally, for our subsequent
theoretical/numerical treatment, the total dimension N of
the Hilbert space scales as N = LN, where N =
(N + L —1)!/N!(L — 1)! is the dimension of the bosonic
subspace. The exponential increase of N with Ny and L is
thus evident.

In the absence of interactions between the fermionic and
bosonic component [Wrp = 0 in (4)], the fermions will
undergo coherent Bloch oscillations with a period Ty =
2ath/Fd [7]. However, finite values of Wy will induce a
collision-induced relaxation of the fermionic dynamics,
eventually resulting in a nonvanishing current across the
lattice. For weak coupling between fermions and bosons,
we can describe the reduced fermionic dynamics in second
order perturbation theory in Wpp. Further, we use the fact
that the bosonic subsystem is known to exhibit chaotic
level statistics (in the random matrix sense), over a broad
range of Wy and Jp [8,12], and therefore can substitute for
a noisy environment [13], provided its initial state is char-
acterized by equally distributed populations of the different
sublevels (this is the high-temperature limit on the scale of
the lattice’s lowest band’s energy spread, though perfectly
compatible with keeping low temperatures on the scale of
the gap between the lattice’s fundamental and first excited
band). Indeed, the boson-number cross-correlation func-
tion,

Rl,m(t’ t/) = Tr[ﬁl(t)ﬁm(tl)])
A (t) = exp(iHgt/h)A, exp(—iHgt/h),

is very well approximated by the cross correlation gener-
ated by a random matrix Hamiltonian (chosen from the
Gaussian orthogonal ensemble [12]), as illustrated in Fig. 1
for Ry (z,0) and R;,(¢,0). For N >2 and L such that
N > 100, we numerically extract a well-defined, fi-
nite time scale 7 = 3h/J for the decay of these correla-
tions [14].

Consequently, if we choose lattice constant d and static
field strength F such that 7 << Ty [15], the correlation
function of the bath can be approximated by a § function

/ 3 t—1
Rl,m(t: t) =n 61,m5< >’ (6)
T

on the typical time scale of the fermionic dynamics, given
by the Bloch period T. This justifies a Markov approxi-
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FIG. 1. Time evolution of the number correlation functions

Ry (2, 0) (top panel) and R (¢, 0) (bottom panel) of the bosonic
bath (3), initially prepared in an equally weighted superposition
of the bosonic eigenstates. N = 7, L = 9. The ratio between
interatomic interaction strength and tunneling coupling is fixed
at Wy/Jp = 3/7, what ensures that we are in the parameter
range of Wigner-Dyson spectral statistics, at 7 = 1 [8]. Time is
measured in units of the site-to-site tunneling period 75 = h/J5.
The dashed lines show the bosonic correlation functions which
result from substituting the Bose-Hubbard Hamiltonian (3) by a
random matrix of the Gaussian orthogonal ensemble.

mation after tracing out the bosonic degrees of freedom,
and we end up with the master equation for the fermionic
density matrix,

(F) j
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where the decay rate is given by
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An analytic solution [16] of (7) leads to the following

expression for the mean fermionic velocity in the lattice:
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in perfect agreement with the numerical result obtained
from a direct propagation of the dynamics, with the bo-
sonic bath prepared in an equally weighted statistical mix-
ture of the eigenstates of the Bose-Hubbard Hamiltonian
(equivalent to the high-temperature limit), while the fermi-
onic subsystem is launched in a Bloch wave with vanishing
quasimomentum. As illustrated in Fig. 2, the fermionic
Bloch oscillations decay irreversibly, with a decay constant
v which—in agreement with Eq. (8)—is fully controlled
by the filling factor i, by the fermion-boson interaction
strength Wgp, and by the bosonic tunneling coupling J3.
However, Fig. 2 indicates no nonvanishing average drift
of the fermions across the lattice; hence no current is
observed. This is a consequence of our above derivation:
while the master equation description provides a quite

4 ®)

v(t) = vge 7' sin(wpt), vy

050404-2



week ending
PRL 96, 050404 (2006) PHYSICAL REVIEW LETTERS 10 FEBRUARY 2006

1 : ‘ 1

S Jﬁ\\ /ﬂ\ /\\ A~ A | /\/\/ A

=00 \ /NSNS SN AN = |

SV RAVERVARVAR % s\ A

-1 J . i = v

0 2 4 6 8 S

- N A | o 2 4 6 8

S ﬂ | SN ,/—\‘ i - ~ o~ ——_]

= 0 \ /" \/ :\ / N . t/TB

3_1 : — . 2 . [ [
0 2 4 6 8 B
L T ‘ > o

g f/ \\ A ’ ) S P

= 0o \ /NS of =

= \/ | N mﬂﬂ v

Sy i ‘ ‘ 1 ‘
0 2 4 6 8 0 2 4 6 8

tT g T p

FIG. 2. Normalized mean velocity of the Fermi atoms, in units
of vy = Jpd/hfor Fd = 0.57 X Jp, Jg = Jp for fermion-boson
interaction strengths Wrp = 0.101 X Jz, 0.143 X Jp, 0.202 X
Jr (from top to bottom), and N =7, L = 9. The typical time
scale of the interaction induced decay of the fermionic Bloch
oscillations fits the time scale y~! predicted by Eq. (8) (dash-
dotted vertical lines) very well. The same observation holds for
fixed Wy and variable Fd (not shown here).

satisfactory and quantitative picture of the collision-
induced decoherence of the fermionic Bloch oscillations,
it also implies that there is no backaction of the fermion-
boson coupling on the bath (this is the essence of the
Markov approximation). Consequently, no net energy can
be transferred from the fermionic into the bosonic compo-
nent (the latter being initially in a fully thermalized state),
as clearly manifest in the time evolution of the average
energy of the bosonic component, represented by the
dashed line in the bottom panel of Fig. 3. If instead we
choose a bosonic initial condition given by a low tempera-
ture Boltzmann distribution P(e;) ~ exp(—¢;/kT), with
temperature kgT = 2.86 X Jp [17], over its energy levels
€;, the bath can be heated by the collisions with the
fermions, and thus extract energy from the fermionic com-
ponent. Such a choice of the bosonic initial state leads to
the relaxation of the fermionic Bloch oscillations, associ-
ated with a (non-Markovian) energy increase of the bo-
sonic component; see Fig. 3. Correspondingly, the
fermionic mean velocity exhibits a nonvanishing drift, on
top of the oscillatory behavior due to the Bloch dynamics.
A finite fermionic current across the lattice is observed in
the upper panel of Fig. 3. Since we will be dealing with a
closed system of finite size (finite particle number and
finite lattice length), the bosonic bath has a finite heat
capacity and cannot act as a reservoir over arbitrary time
scales. Consequently, the relaxation-induced current
ceases as soon as the bath is fully thermalized by draining
energy from the fermionic dynamics.
Fermionic drift

(1) = v(t) — voe V' sin(wgt) (10)

and bosonic energy gain AEy are related through the

FIG. 3. Mean velocity v(f) of the fermionic component (top
panel, solid line), in units of vy = Jrd/h, and average energy
Ep(f) of the bosonic component (bottom panel, solid line), in
units of J, for a low temperature (kzT = 2.86 X Jp) initial state
of the bosonic bath. Fd = 0.143 X Jp, Wgg = 0.143 X Jp,
Wg/Jg =3/7,Jg = Jp, N="7, L =9. The dashed lines indi-
cate the corresponding solutions for a thermalized initial state of
the bath, k3T = 150 X Jp. For a nonequilibrium initial condition
of the bath the finite drift velocity ©(¢) manifests as a clear,
nonvanishing offset of the fermionic mean velocity with respect
to the Markovian result indicated by the dashed line (top panel).
The dash-dotted line in the bottom plot is obtained by integration
of Eq. (11).

classical relation AE; = FAx = FoAt,i.e.,
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Integration of (11) with v as defined in (10), together with
v(r) from the exact solution of the Schrodinger equation
under (1), leads to a very good fit of the exact time
dependence of the bosonic mean energy, in the lower panel
of Fig. 3. We can thus deduce the current-voltage charac-
teristics for the fermions, i.e., the dependence of the drift
velocity ¥ (equivalent to the current, modulo the carrier
density) on the static force (or potential difference across
the lattice) which generates the current: For sufficiently
short times, Eq. (11) can be rewritten as AEy = FoAt,
where Fo can be extracted from the exact result for Eg(r)
as displayed in Fig. 3 (averaging over the residual Bloch
oscillations during the first two Bloch cycles). Dividing
this initial growth rate of E(r) by F, we obtain the depen-
dence of the “current” v on the ‘““voltage” F in Fig. 4,
which exhibits a marked transition from Ohmic (v ~ F)
behavior to negative differential conductivity (v ~ 1/F),
as F is increased. Remarkably, this faithfully reproduces
the qualitative behavior predicted by the phenomenologi-
cal Esaki-Tsu relation [18] for a current across doped
superlattices,

__ Yy wp/y
T A T+ (0p/ (12
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states. In this regime, non-Markovian effects due to the
granularity of the bath are expected, which will be in reach
for direct experimental probing. Finally, the generalization
of our work to 2D geometries, where also magnetic field
effects may be included [20], could open new avenues to
study complex or chaotic [21] fermionic transport with
tunable relaxation rates.

We acknowledge fruitful discussions with Artem
Dudarev, and partial financial support by Deutsche

Forschungsgemeinschaft, within the SPP1116 program.
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FIG. 4. Fermionic drift velocity ¥ (stars), in units of vy =
Jpd/h, vs static forcing Fd, in units of Jg, compared to the
prediction of Eq. (12) (continuous line), for the same parameters.
The Bloch frequency wg = Fd/h increases with F, while the
effective decay rate y =~ 0.037J/h, derived from (8) for N = 7,
L =9 Wgg=0.143 X Jp, Wg/Jg = 3/7,Jg = Jp, is constant.
Note the clear transition from Ohmic (v ~ Fd) to negative
differential conductance (o ~ 1/Fd), at a finite value of Fd.

with quantitative differences, notably for large F, due to
the finite size of our atomic sample. Note that, in contrast to
experiments in semiconductor superlattices, the effective
scattering rate vy is perfectly controlled and continuously
tunable (e.g., via Feshbach resonances [19]) in our present
quantum optical setting, as a consequence of Eq. (8).

In conclusion, we have shown that a directed current of
spin-polarized ultracold fermionic atoms across a one-
dimensional optical lattice under static forcing can be
induced by collisional interaction with a bosonic admix-
ture. While the current increases linearly with the static
force in the limit where the collision-induced decay rate
(independent of the static forcing) is much larger than the
fermionic Bloch frequency (increasing linearly with the
static field strength), it decreases inversely proportional to
F in the opposite limit. This crossover has an intuitive
cause: Finite, collision-induced decay rates induce diffu-
sive transport at arbitrarily weak forcing (many collision
events during one Bloch cycle), while strong forcing and
small collision rates (few collisions during many Bloch
cycles) essentially reestablish the Bloch oscillations and
suppress the directed current.

Our theory, based on a microscopic, strictly Hamiltonian
picture of the many-body dynamics, is amenable to experi-
mental scrutiny. It also identifies the microscopic origin of
first experimental observations which already pointed in
this direction, on the basis of a purely phenomenological
interpretation [1]. Furthermore, our model allows for bo-
sonic baths composed of an arbitrary number of particles.
Future work will explore the limit of very small baths, with
small Hilbert space dimensions and a reduced density of
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