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Effect of Axial Growth on Turing Pattern Formation
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We have performed one-dimensional and two-dimensional experiments and simulations to study the
formation of patterns in a system that grows continuously in one direction. Depending on the growth
velocity, three basic spatial configurations can be obtained: stripes that are parallel, oblique, or
perpendicular to the growth direction. The dependence of the wavelength on the growth velocity has
also been observed. Our results illustrate the importance of these growth mechanisms in determining the
final configuration of chemical and biological pattern-forming processes.
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FIG. 1. Schematic of the experiment. A moving opaque mask
image creates a growing shadow domain where Turing patterns
can develop. In the illuminated domain the pattern is suppressed.
Over the past decades, chemical reaction-diffusion sys-
tems have been used to model pattern formation mecha-
nisms observed in nature [1–5]. This was Alan Turing’s
main focus when he launched the field more than half a
century ago [6]. Turing showed that relatively simple, pure
reaction-diffusion systems can produce stationary patterns
in time and periodic in space [7,8]. These Turing patterns
are commonly used as chemical models to understand
symmetry breaking processes that occur in biology [9–15].

Living biological systems develop, change, and interact
with their environment [16–18]. In the past, the majority of
experimental studies on pattern formation in reaction-
diffusion systems have been performed with static domains
(i.e., systems with fixed sizes and fixed parameter condi-
tions) [19–21]. But since living organisms develop under
the continuous influence of external changes [22], the final
shape of a living tissue (such as in somitogenesis and skin
patterning) is strongly influenced by environmental varia-
tions [5,13,23,24]. The most relevant of these mechanisms
is growth, which is obviously present in almost every living
system [16]. The effects produced by the boundary shape
and by the dynamical growth have been studied numeri-
cally and theoretically [25–30]. In this Letter, we focus
on pattern formation in reaction-diffusion systems under
controlled (longitudinal) axial growth in one- and two-
dimensional media. We study experimentally and numeri-
cally how the growth velocity influences the wavelength of
the pattern. The dependence of the spatial configuration on
the velocity of the moving boundary is also reported. Our
results reveal a rich, complex, and rather surprising behav-
ior of the patterns when the boundary growth velocity is
modified.

Experiments are performed using the chlorine dioxide,
iodine, malonic acid (CDIMA) [31–33] reaction in a ther-
mostated, one-sided, continuously fed unstirred reactor
(CFUR) at 4� 0:5 �C. The patterns are observed in an
agarose gel (2% agarose, 0.3 mm thickness, 20 mm diame-
ter). Reagents are fed into a continuously fed stirred tank
reactor (CSTR) placed underneath the gel CFUR layer. A
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nitrocellulose membrane (Schleicher and Schnell, pore
size 0:45 �m) and an anapore membrane impregnated
with 0.5% agarose gel (Whatman, pore size 0:2 �m) are
placed between the CSTR and the gel layer to avoid
convection in the CFUR. Initial concentrations inside
the CSTR were �I2�0 � 0:45 mM, �ClO2�0 � 0:1 mM,
�poly�vinyl alcohol��0 � 10 g=l and �H2SO4�0 � 10 mM,
and two different concentrations for the malonic acid (MA)
due to experimental requirements.

Because of the sensitivity to light of the CDIMA reac-
tion, the effect of growth can be easily introduced into the
system [34]. High light intensity suppresses the pattern and
low light intensity allows Turing patterns to develop in the
gel. A moving image is projected from a video projector
(Hitachi CP-X327) computer controlled onto the gel (see
Fig. 1). Images were recorded by a CCD camera connected
to a computer for further analysis.

A typical experiment is performed as follows: at the start
of the experiment, high intensity homogeneous illumina-
tion is applied to the entire system and the pattern is sup-
pressed. Hence, the initial condition for all the experiments
is the homogeneous steady state. Then the light from the
video projector is blocked (masked) in a rectangular area.
The size of the rectangular opaque mask image increases
with time along the longitudinal direction, while the trans-
verse dimension remains unchanged. The boundary be-
tween the illuminated and nonilluminated regions moves
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with constant velocity. Thus, the illuminated zone (with no
patterns) decreases its size at the expense of the nonillumi-
nated region (in which patterns can arise).

All the experiments shown here are performed in the
absolutely unstable domain [35,36], which means that the
velocity of the moving boundary of illumination (�) is
smaller than the spontaneous spreading velocity of the
Turing pattern, estimated as �spon 	 1:8� 0:1 mm=h for
the concentrations used. Under these circumstances, the
pattern always arises close to the moving boundary.
Ongoing experiments in the convective unstable domain
reveal other interesting behavior, which is outside the
scope of this Letter.

Quasi-one-dimensional experiments are performed to
investigate the dependence of the wavelength of the pattern
on the growth velocity in a simple configuration. For this
quasi-one-dimensional experiment we use a concentration
of �MA�0 � 1 mM, which produces a pattern composed of
hexagonal spots with an intrinsic wavelength value of � �
0:51� 0:05 mm.

The geometry of the nonilluminated region in which
patterns can form is carefully selected. In fact, the system
0 1 2 3 4

5.2

5.6

6

6.4

Velocity [s.u./t.u.]

W
av

el
en

gt
h 

[s
.u

.]

(d)

(e)

FIG. 2. Turing pattern formation in a quasi-one-dimensional
system with moving boundary. (a)–(c) Snapshots of Turing
patterns taken at intervals of 2 h. The shaded (nonilluminated)
domain is growing from left to right. The velocity of the moving
boundary is � � 0:62� 0:02 mm=h The bar in (c) corresponds
to 1 mm. (d) Plot of the wavelength versus the moving boundary
velocity for the experiments. (e) Wavelength vs velocity for the
numerical simulations in the one-dimensional system.
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is two dimensional but the length of one (transverse)
dimension is short and fixed to be slightly larger than
1 full intrinsic wavelength of the Turing pattern. The other
(longitudinal) dimension of the nonilluminated domain is
continuously growing.

This geometry only allows the development of a single
array of spots as shown in Fig. 2. The results of these quasi-
one-dimensional experiments reveal that the wavelength of
the Turing spot pattern depends on the moving boundary
velocity. Figure 2(d) shows that the wavelength decreases
with the growth velocity.

In the two-dimensional experiment, the fixed transverse
dimension of the nonilluminated area is significantly larger
than the intrinsic wavelength of the Turing patterns, and
therefore the Turing patterns can develop in a full two-
dimensional space. The concentration of malonic acid used
in the two dimensional experiments is �MA�0 � 1:2 mM,
which spontaneously produces stripes without preferential
ordering [21] and with � � 0:54� 0:05 mm.

Stripes parallel to the growing axis arise in the system
for relatively small values of the growth velocity [� �
0:21� 0:01 mm=h in Figs. 3(a) and 3(b)]. The wavelength
of the stripes is equal to the intrinsic wavelength of the
spontaneously formed labyrinthine stripes, � � 0:54�
0:05 mm. The length of the stripes increases with the speed
of the moving boundary.
FIG. 3. Turing pattern formation in a two-dimensional system
with moving boundary. Snapshots at two different times for
different velocities of the moving boundary: (a),(b) � �
0:21 mm=h; (c),(d) � � 0:43 mm=h; and (e),(f ) � �
1:26 mm=h. The boundary between the illuminated and non-
illuminated zones moves from left to right. Size of each snap-
shot: 3:8
 6 mm.
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FIG. 4. Numerical simulations of Turing pattern formation in a
two-dimensional system. Size of the snapshots: 55
 55 s:u:
Boundary moves from left to right at velocity:
(a) � � 0:5 s:u:=t:u:, (b) � � 1:5 s:u:=t:u:, and (c) � �
3 s:u:=t:u: (d) Turing pattern formation due to stepwise changes
of the moving boundary velocity.
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Intermediate values of the growth velocity (� � 0:43�
0:02 mm=h) result in a new arrangement of the stripes. The
pattern is composed of oblique stripes with respect to the
axial direction of growth [Figs. 3(c) and 3(d)]. Figure 3(c)
shows that some spots appear close to the moving bound-
ary. These spots are not stable and the pattern relaxes to the
oblique striped configuration via fusion of adjacent spots
[Fig. 3(d)].

If the velocity of the moving boundary is further in-
creased (� � 1:26� 0:03 mm=h), the stripes arranged
themselves perpendicular to the direction of growth and
exhibit a coherent configuration [Figs. 3(e) and 3(f)]. This
pattern forms by a stripe addition mechanism, with a new
stripe periodically arising immediately behind the moving
boundary. The wavelength dependence on the velocity is
similar to that observed the quasi-one-dimensional system.

In addition, to corroborate the experimental results, one-
and two-dimensional numerical simulations are performed
using the Lengyel-Epstein model for the CDIMA reaction
[37,38], modified to take into account the light sensitivity
[34].
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Here u and v are the dimensionless concentrations of the
activator and the inhibitor species, respectively; a, c, and �
are dimensionless parameters related to other initial con-
centrations and rate constants, and d is the ratio of the
inhibitor and activator diffusion coefficients. The rate of
the photochemical reaction� is a stepwise, time dependent
function of the x-space coordinate:

��x� � �0 for x < x��t�; (2)

��x� � �max for x  x��t�; (3)

x��t� � x0 � �t: (4)

The parameters used are: a � 36, c � 2, �0 � 0,
�max � 5, d � 1:07, � � 20, and x0 � 0. The intrinsic
wavelength of the pattern is � � 5:61 spatial units (s.u.).
To mimic the experimental conditions, we set � � �0 for
the nonilluminated zone in which the Turing patterns can
form. In the illuminated zone the term �max results in
crossing the Turing bifurcation. Hence, the steady state is
the stable solution here. As in the experiment, we started
with the whole medium in steady state (� � �max). Then,
the Turing unstable domain (� � �0) starts to grow from
left to right. The velocity of the moving boundary � is
always less than the velocity of the spontaneous Turing
pattern development. Zero flux boundary conditions are
used along the static boundaries of the system.

Figure 2(e) shows the dependence of the pattern wave-
length on the velocity (�) for a one-dimensional system.
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The results are in good agreement with the experimental
results shown in Fig. 2(d). Both experimental and numeri-
cal results display decreasing pattern wavelength with
increasing velocity of the moving boundary. On the other
hand, the wavelength of the pattern is uniquely selected by
the growth velocity among all of the unstable wavelengths
predicted by simple linear stability analysis of the Turing
instability. This mechanism of wavelength selection can be
used to obtain the desired wavelength of an arising pattern
by selecting the appropriate growth velocity.

Two-dimensional numerical simulations were per-
formed for different velocities of the moving boundary.
We found that stripes parallel to the growing axis arise in
the system for small values of the system growth velocity
(where t.u. stands for time units) [� � 0:5 s:u:=t:u:
in Fig. 4(a)]. Intermediate growth velocities [� �
1:5 s:u:=t:u: in Fig. 4(b)] result in an oblique orientation
of the stripes with some transient spots close to the
boundary, as observed in the experiment. When the veloc-
ity of the moving boundary is further increased [� �
3:0 s:u:=t:u: in Fig. 4(c)], the stripes take a perpendicular
orientation to the direction of growth, in the same fashion
as observed in the experiments.

To demonstrate that the pattern formation and stripe
orientation are dependent only on the growth velocity,
numerical simulations were also performed with stepwise
changes in the moving boundary velocity [Fig. 4(d)].

A typical labyrinthlike pattern is allowed to freely de-
velop in a rectangular domain with fixed boundaries (size
75
 65 s:u:). Then at x0 � 65 s:u: (i.e., the first dashed
white line on the left) the right-hand boundary of illumi-
nation was allowed to move from left to right with velocity
� � 0:5 s:u:=t:u: The new pattern is arranged as horizontal
stripes (parallel to the growth direction). Once the size of
the system reached the second white dashed line at x � x1,
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the velocity was increased to � � 1:5 s:u:=t:u: At this
velocity the newly formed pattern consists of oblique
stripes, which appear after a transient. Then, at the third
white dashed line at x � x2, the moving boundary velocity
was set to � � 5 s:u:=t:u: and perpendicular stripes appear.
This simulation confirms that the pattern selection is only
dependent on the velocity of the moving boundary.

In this Letter we investigate Turing pattern formation in
systems in which the size is allowed to grow in one
direction. In a one-dimensional system the wavelength of
the Turing pattern is determined by the growth velocity and
decreases with the increase in the growth velocity.

In two-dimensional systems, the growth velocity acts as
a selection mechanism of the final configuration of the
striped pattern among three main spatial arrangements:
parallel, oblique, and perpendicular stripes. Different ve-
locity values activate different Fourier modes of the pat-
tern. The growth axis imposes a preferential direction for
the orientation of the emerging Turing pattern. The results
of numerical simulation are in very good agreement with
experimental observations.

In nature, the pattern formation processes and symmetry
breaking phenomena often occur while the system is grow-
ing and our results illustrate the importance of the growth
mechanism in the final configuration of chemical and
biological pattern-forming processes.
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