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Domain Instability during Magnetization Precession
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Spin wave equations describing the nonequilibrium precessional state of a ferromagnetic system are
given. The equations reveal a new type of spin wave instability (SWI) towards growing domains of
uniform magnetization. In the developed stages of SWI a nonstationary picture of domain chaos is
revealed by numerical simulations. SWI is capable of explaining recent experimental observation of
stochastic switching in precessional magnetization reversal.

DOI: 10.1103/PhysRevLett.96.047601

Fast and strong magnetic field pulses, generated by the
highly relativistic electron bunches from a large electron
accelerator, have opened the possibility to study preces-
sional magnetization reversal [1-3]. In this fastest tech-
nique of magnetic switching, the magnetic field is spatially
uniform on the lengths that are typical for a ferromagnetic
system: the domain wall thickness, the grain size or the
width of thin films, etc. The amplitude of the magnetic field
in the pulse is such that the Zeeman energy exceeds the
anisotropy energy. The integral of the magnetic field over
the duration of the pulse can be varied to result in a uniform
rotation of spins by angles ranging from few degrees to up
to 277 [1]. Furthermore, the magnetic field vector may be
applied at various angles with respect to the anisotropy axis
[2]. During the pulse little excitation occurs to the ferro-
magnetic order of rotating spins. All these special proper-
ties of the fast pulses allow one to prepare in effect a
nonequilibrium uniform ferromagnetic state with the mag-
netization vector pointing in a freely chosen arbitrary
direction. This has led to precessional or ballistic switch-
ing, where traditional magnetic pulses of longer duration
and weaker amplitude have been used. In this less trans-
parent, but technically highly interesting case, the magne-
tization precession results from the combined action of the
magnetic field during the pulse and the anisotropy [4—8].

After the pulse has vanished, precession of the magne-
tization starts in the anisotropy field. In this precession,
which is almost periodic in time due to weak intrinsic
dissipation, the magnetization vector may enclose large
angles with the anisotropy axis. There is experimental
evidence that such large angle precession is governed by
the Landau Lifshits equation but with a Gilbert dissipation
constant exceeding, by an order of magnitude, the one
observed in ferromagnetic resonance where the precession
angles are small [9]. In this Letter this large damping is
related to the development of a spin wave instability (SWI)
during the precession. SWI is similar to the two-magnon
Suhl instability that has been extensively studied in con-
nection with the parametric excitation of spin waves in a
ferromagnet close to equilibrium [10,11]. SWI induces a
fast transfer of magnetization from the uniform mode to the
spin wave modes during small angle precession [12]. For
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the special case, in which the magnetization after the pulse
is close to the saddle point of the anisotropy energy, SWI
develops into growing domains of stable magnetization
with the domain sizes being of the order of the domain
wall thickness.

In this Letter, for ferromagnetic systems in the preces-
sional state I find a system of spin wave equations in the
rotating frame. Solution of these equations under general
conditions yields SWI. The equation for the uniform mode
coupled to the growing spin waves is the Landau Lifshits
equations with the effective Gilbert constant that grows
exponentially in time. Once SWI is developed, domains of
saturated magnetization chaotic in space and time are
revealed by numerical simulations.

In the precessional state the unit vector of local magne-
tization inside ferromagnetic particle is written as:

M, 7) = i(eh1 — & + (1, P, (1)

[M*(1,7) = 1] using two-component spin wave field
(i;(t, F) = ¢, 7)é,(t) (a = 1,2) orthogonal to 7 (spin
waves are present either due to the thermal excitation
before the pulse or due to SWI developing after the pulse)

and by a rotating frame of three mutually orthogonal unit

vectors 7i(t), é,(t) at any time ¢. For |d§| <« 1, the uniform
precessional mode is defined as:

i) = ZLV f M(t, F)d7, )

where V and d are the volume and the dimension of a
particle and normalization Z = 1. Two vectors ¢,(z) are
determined by the vector 7i(r) apart from the arbitrary time-
dependent rotation around the axis 7i(z). This rotation
represents U(1) gauge invariance in the description of
spin waves in a ferromagnet. Because 72%(f) = 1, the vector
dii/dt is orthogonal to 7i(z); therefore, it is convenient to
choose ¢, (7) to be proportional to d7i/dt. This gauge fixing
condition is given by the Frenet-Serret equations: dii/dt =

(X i, dé,/dt = { X é,, where the rotating frame is pre-
cessing as a solid structure about the Darboux vector

Z(t) = —7(0)n(t) + k(r)é,(r), where k() is the local cur-
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vature and 7(¢) is the local torsion of the precessional curve
7i(t) on sphere 71> = 1.

At low temperatures only long wavelength spin waves
are excited. Because the pulse induces a uniform coherent
rotation short wavelength spin waves are not excited dur-
ing the pulse and the use of the classical long wavelength
dynamics is appropriate. Because of the Goldstone theo-
rem the uniform mode 7 is absent in the exchange part of
the Hamiltonian of a particle:

Hex[¢]=§/[(6#d3)2 (4 ‘f)z}dd* 3)

where J is the exchange constant. Relativistic spin-orbit
and dipole-dipole interactions give rise to anisotropy en-
ergy that for simplicity is written in the local approxima-
tion:

Hoo[M] = ] EGV(s, )7, @)

where the anisotropy energy density E(/m) is an arbitrary
function of m and does not depend on 7. Here and below
is an arbitrary unit vector distinct from the precessional
mode 7i(z). One-ion anisotropy is an even function E(/i) =
E(—7) and is symmetric under the crystallographic group
of transformations 7;: E(T,/m) = E(/%). Uniform magnetic
field can be included into E(m). The choice of anisotropy
as a uniform function of local magnetization Eq. (4) is very
general and applies to many experiments. It holds for
particles of special shapes like the ellipsoid where the
dipole-dipole interaction reduces to an effective uniform
demagnetizing field. At interfaces, where there is the Néel
interface anisotropy energy due to the breakdown of the
translational symmetry, Eq. (4) holds provided the spin
wave modes with wave vectors perpendicular to the inter-
face are not excited (as in ferromagnetic thin films).

The classical dynamics of local magnetization M(t, 7) is
described by the Larmor precession equation:

o.M = M><5H (5)
' [y

where y = e/mc is the gyromagnetic ratio (we set y = 1
by rescaling time ¢ — yf) and H = H. [$] + H,,[M] is
the Hamiltonian. The Larmor equation conserves the total
energy dH /dt = 0. We substitute into Eq. (5) 8H,, /M =
8H.. /8¢ and S8H,,/SM = —F(M), where the force
F(i) = —dE/dr is a vector field on a sphere m? = 1.
In the Frenet-Serret gauge: &, F(ii)) = k(r) and &
F(7)) = 0. The total energy is the sum of the uniform
mode anisotropy energy E(7) and the spin wave energy
Ew(, [p]): H = Ei1) + (7, [¢]).

We project the Larmor equation Eq. (5) onto an equation
representing the uniform mode Eq. (6) and onto an equa-
tion representing the remaining nonuniform modes
Eq. (11). The component of both uniform and nonuniform
equations that is parallel to 7(¢) is a linear combination of

the other equations and therefore is redundant. For weakly
excited spin waves we expand the Larmor equation up to
the second power of the spin wave amplitudes. The equa-
tion for the uniform mode reads:

di . .14
an = iix [—(1 + Q0 )F (i) — i X F(n)zaé’gw} ©)

where Q0, (7, [$]) is the second order spin wave functional
that gives the first correction to the speed of precession and

%, (7, [p)) is the second order spin wave energy:
1 s s e -> = >
ggw - 5 [[‘I(aﬂd))z +éd-C-¢p+ (7 - F)sz]ddr: (N

where C is the anisotropy mass tensor with components:

. 0’E . 0’E
Cop(im) = ST amP’ Cup(il) = egwef, (8)
that can be related to the precession curvature x(f) and
torsion 7(¢). In the limit of small spin wave amplitudes the
conservation of energy E(7i) in the Frenet-Serret frame
gives: it - F + Cy, (i) = —7(¢). Using k&, = dii/dt and
ké, = F — ii(ii - F) we find

Gl d
Clz(n)—zK(ﬁ)2< = dﬁ)K (i) = - Togk(). )

Equation (6) has the first integral: E(71) + &%, (7, [¢]) =
const, which is the total energy conservation.

Note that Eq. (6) has the form of the Landau Lifshits
equation with the Gilbert dissipation constant

(__

The sign of the Gilbert constant can be found in the vicinity
of the extremum point of the anisotropy energy E(i7)
provided the spin wave amplitudes grow. In the vicinity
of the minimum point both the curvature x(¢) > 0 and the
mass tensor C(7i) approach zero and are proportional to the
deviation angle from the minimum point. On the contrary
the torsion 7(f) approaches some finite negative value. For
fast growing spin wave amplitudes and negative 7(z) we
find from Eq. (13): d&%,/dt > 0. The Gilbert constant is
positive and due to the total energy conservation E(7) +
E%, = const: dE(i1)/dt < 0. Therefore, the vector 7i(t) ap-
proaches the minimum point during the precession.
Superficially this could be seen as the dissipation process
although the nonuniform Larmor precession in ferromag-
netic systems conserves the energy and is fully time re-
versible. The same analysis shows that near the maximum
point the torsion 7(¢) approaches some finite positive value
and therefore the Gilbert constant is negative, dE(7)/dt >
0, and 7i(z) approaches the maximum point during the
precession accompanied by SWI.
The equation for spin wave nonuniform modes reads:

>

9, =i X[~JoAp + C@H) - ¢+ (- F)pl (1)
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or in the rotating Frenet-Serret frame [13]:

€apd " = —J9%d, + Cop(iD) PP + (1 + ii - F)gp™.
(12)

This linear system is Hamiltonian with the first integral
£9,Gi, [$)) + (2) /[(5(& #)?d?F = const. (13)

In the limit of infinitely small amplitudes of all spin waves
the anisotropy energy E (i) is approximately conserved and
the uniform mode precesses periodically in time 7(f) =
ii(t + T), where T is the period of precession. Solution of
Eq. (12) for a spin wave mode with momentum ¢ can be
written as a monodromy matrix:

b+ T) =Mt T, b, (14)

with unit determinant detM = 1. Let a(7T, ¢) = Tr M/2.
If |a] <1 then the eigenvalues of M are two complex
numbers A;, = a * iVl — a* otherwise (la| = 1) they
are real: A;, = a = va? — 1. In the latter case spin wave
mode is instable and its amplitude grows exponentially
with the increment v(g) = log|A;|. Two examples have
been studied numerically: E() = A,m? + A,m3 + A m?
and E(m) = m3 + my + m?. In the first case the uniform
precession: 7i(), &,(1), é,(¢) is found analytically in terms
of the elliptic functions. Numerical solution in both cases
shows that a(A) is an oscillating (but not periodic) function
of spectral parameter A = Jg°. Note, that for C,, = 0,
a(X) = cos(AT). There are infinitely many intervals of
instability [zones |a(A)| = 1]; in both cases, they appear
periodically and for A — oo they shrink. The spin wave
dynamics in the periodic precessional state of a ferromag-
net is similar in many ways to the dynamics of particle in
1D periodic potential. In the latter case it is well known
that gaps in the spectrum open that separate the conduction
bands. These gaps correspond to the instability zones in our
case. We propose without proof that for general precession
there exist unstable spin wave modes in the momentum
space.

In the saddle point where 7 is constant and for special
precessions the tensor C does not depend on time. In this
case the spin wave dispersion in Eq. (12) reads:

0(§) = JJPUG + Cp = C;)) = Cp. (15)

SWI develops if either Cj, # 0 or Cyp — Cp; <O.
Therefore, systems with an easy-axis anisotropy are always
unstable whereas easy-plane systems could be stable pro-
vided Cy, = 0, yet this requires precession along a circle
with the constant curvature Eq. (9). An example of SWI is
shown in Fig. 1 for 1D exchange coupled easy-axis chain
of 512 spins. It is described in the long range limit by the
Hamiltonian (3) and (4), where E(1) = —Am2,J = 1, and
A = 0.009. The initial magnetization is set to MZ(0, x) =

0.5+ 0.01sin(37x/128), M>(0,x) =0, and M*=

4/1 = M?. x is an integer coordinate of sites. The Larmor

equation (5) is solved with the time measured in units 1/J.
Four magnetization profiles M*(¢, x) are shown for t = 0,
400, 600, 800 with increasing amplitudes and higher har-
monics. Components M* and M” perform uniform preces-
sion accompanied by SWI (not shown). We observe that
M*(t, x) remains periodic in space x but it seems to be
periodic in time, too, with period 7 g, = 1600. At times
t > 800 (not shown) the amplitude decreases and reaches
the initial condition profile at T g, [14].

The dispersion (15) has a branch with positive imaginary
part: wy(g) = iv(g) in the region 0<gq <g;, where

2Jg} = [(Csy = C11)* +4C3, — (Cyp — Cyy). The spin

wave distribution function in momentum space: Nq(t) =

¢?2(t, g) grows exponentially with the increment reaching
its maximum v, = v(q,) at g = q,,, where 2Jq; =
Cyy — Cy or g, =0. At t — oo the spin wave energy
Eq. (13) is the sum over all instable modes:

- d_)
€0, [8) = —vey [ Ny 24

q9<q; (27T)d ' (16)

Growing instability disturbs the spin wave distribution
in the momentum space away from the thermal equilibrium
distribution N(q? = T/wy(q), where wy(g) is the spin wave
dispersion before the pulse. After the pulse, SWI modes
grow and the scattering in the direction of the equilibrium
distribution grows, too. Both processes can be described by
the Boltzmann kinetic equation:

where the relaxation rate is given by the collision integral
I(N;). Generally v(¢q) and I(N;) are of the same order of
magnitude. The leading contribution to the collision inte-
gral comes from the two-magnon scattering with one mag-
non having large momentum p in the incoming and
outgoing states and second long wavelength magnon with
the momentum ¢ in the instability region 0 < g < g;:

d'p

em 1Y

1) = [ W@ 5N = Ny)
where the scattering probability does not depend on mo-
mentum: W(g, p) = W, and is small at low temperatures
W ~ (T/J)3/2. 1t could be proven that the probability of
absorption and emission of long wavelength magnon with
purely imaginary dispersion w,(g) = iv(gq) by a short
wavelength magnon is zero. The probability of two long
wavelength magnon scattering is proportional to the small
factor [#(g)/J]? and could be neglected.

Solution of the Boltzmann kinetic equation (17) yields:

N3(0) = [N + ®(0)]exp[2v(g) = Y1, (19)

where ®(r) = Nylexp(xt) — 1], x = W Q is the relax-
ation rate, O = [, _ d’q/(2m)? is the volume of insta-
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FIG. 1. Four magnetization profiles M?(x) during growth of
SWI as it is explained in the text.

bility region in the momentum space, and Ny =
Jo<a, Ngddtj/ (2m)? Q is the average number of would-

be instable spin waves in the system per one mode before
the pulse arrives. Solution of Eq. (19) has an asymptote:
N;(1) = Nyexp[2v(q)t], as t — oo that does not depend on
the initial occupation number for this mode. The spin wave
energy Eq. (16) at t — oo could be estimated by the steep-
est descent method.

In particles with the size less then the critical size L.,
SWI could not develop due to the wave vector quantiza-
tion. L. depends on the shape of the particle and is pro-
portional to the domain wall width L. ~ \/J/—)\

For vanishing dissipation (Goli| < v,,) the magnetiza-
tion dynamics Eq. (5) could be traced during times much
larger then the instability time v,,'. At long times spin
waves saturate (as in Fig. 1) to a domain pattern that
depends on the initial condition for the magnetization. If
initially the magnetization is close to the saddle point of the
anisotropy energy with small thermally exited spin waves,
then a special multidomain state emerges at tv,, >> 1 (see,
for example, Fig. 2) and it evolves chaotically in time and
space. In this example the total magnetization is conserved
n*(t) = 0; therefore, the area of black and white domains
are identical. The local width of domain walls in Fig. 2
fluctuates and is not determined by the minimum of energy
as in equilibrium.

In the absence of SWI the magnetization of the easy-axis
ferromagnetic particle, excited to the vicinity of the saddle
circle by the pulse, spirals down deterministically into the
nearest minimum of the anisotropy energy. But in large
particles SWI is developing into the domain chaos and new
possibility arises. In granular systems, weak random an-
isotropy at boundaries or the dipolar interaction destroys
the conservation of n%(). This might induce a diffusion of
magnetization n(¢) due to the microscopic random torques
applied at the chaotic domain wall positions. The total
energy of multidomains will monotonically relax due to
the weak dissipation and eventually a single domain state
prevails. If the dissipation allows enough time for n(f) to
diffuse into the adjacent energy well (change the sign) then
the fate of this particle becomes probabilistic with both

L)

0

) ’

ao ’ }
a a0 a0 10} &0

FIG. 2. Chaotic domains in the cluster of 96 X 96 exchange
coupled classical spins with easy-axis anisotropy E(m) =
—Am2, A =0.02J. Initial conditions are random: M*(0, F) =~
1, [M»3(0, 7)| < 1. Nonlinearity M> = 1 cuts the growing spin
waves into multidomains. Shades of gray represent M=(¥) at t =
290/J, with black and white being spin-up and -down.

minima of the anisotropy energy being possible, depending
on the thermal initial conditions. This then manifests itself
in the stochasticity of precessional switching observed in
Ref. [3].

In conclusion, we have found the microscopic equations
that govern a new type of general spin wave instability in
the precessional state of a ferromagnetic system.
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