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Blue Quantum Fog: Chiral Condensation in Quantum Helimagnets
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It is shown that a condensation transition involving a chiral order parameter can occur in itinerant
helimagnets, in analogy to the transition between the isotropic phase and the phase known as blue fog or
blue phase III in cholesteric liquid crystals. It is proposed that such a transition is the explanation for
recent neutron scattering results in MnSi. Predictions are made that will allow for experimental tests of
this proposal.
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FIG. 1. Phase diagram of MnSi, including the proposed chiral
liquid phase with an associated critical point (CP). The CP may
be at T < 0 and, thus, inaccessible. Second- (or very weakly
first-) order transitions, first-order transitions, and crossovers are
denoted by solid, dashed, and dotted lines, respectively. The non-
Fermi-liquid (NFL) region includes the chiral liquid, and the
chiral gas extends below T�. The precise structure near the
tricritical point (TCP) is not known. See the text for further
information.
The unusual behavior of the low-temperature itinerant
magnet MnSi has received much attention. At ambient
pressure P, the material enters a magnetic phase below a
temperature Tc � 30 K. Over distances of a few lattice
spacings, the magnetic order appears ferromagnetic [1].
However, at longer length scales, a helical modulation of
the magnetization appears, with a wavelength 2�=Q0 �

170 �A [2]. This helical structure is believed [3,4] to be due
to an interaction between magnetic fluctuations M of a
form first proposed by Dzyaloshinski [5] and Moriya [6]
(DM),

R
dxM � �r�M�. Such a term, which is produced

by the spin-orbit interaction, is allowed by symmetry in
MnSi since its lattice structure lacks inversion symmetry.
The helix is readily observed via neutron scattering, with
scattering intensity appearing only in the h111i direction
since crystal fields lock the direction of the helix [2,7].
With increasing P, the transition temperature to the or-
dered phase decreases monotonically, and the nature of the
transition changes from continuous or very weakly first-
order to decidedly first-order at a tricritical point at P� �
12 kbar, before the transition temperature drops to zero at
Pc � 14:6 kbar. In the disordered phase, i.e., for P> Pc,
spectacular non-Fermi-liquid (NFL) behavior of the trans-
port properties has been observed below a crossover tem-
perature T� [8,9].

Within this extended NFL region, Pfleiderer et al. [7]
have identified a pressure-dependent temperature scale T0,
with a strong neutron scattering signal at a well-defined
wave number q0 � 0:043 �A for T < T0. The signal is
strong enough to be reminiscent of the one at Q0 �

0:037 �A in the ordered phase but is much more isotropic,
with broad maxima centered around the h110i direction.
These observations imply the existence of short-ranged
helical order even in the nonmagnetic phase, and Ref. [7]
has suggested that this short-ranged helical order is at the
heart of the NFL transport behavior.

In this Letter, we focus on such local correlations and
argue that the existence of the temperature scale T0 is
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consistent with a first-order transition from a chiral liquid
to a gaseous phase as one crosses the condensation tem-
perature T0�P�. We thus propose that the phase diagram of
MnSi is more complicated than previously thought, with a
liquid-gas-type transition inside the nonmagnetic phase.
This proposed phase diagram is schematically depicted in
Fig. 1.

A convenient order parameter for this first-order transi-
tion is the chiral composite field  �M � �r�M�.  is a
pseudoscalar which has nonvanishing average values both
below and above T0. The two phases separated by T0 thus
have the same symmetry, as do the gaseous and liquid
phases, respectively, of ordinary fluids. Crossing the coex-
istence line T0�P� is accompanied by a discontinuous
change in the expectation value of  , which corresponds
to stronger short-ranged helical correlations in the liquid
than in the gas. This accounts for a stronger neutron
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scattering signal in the liquid, with the signal being iso-
tropic to zeroth approximation. Our scenario is analogous
to the transition from the isotropic phase to the phase
known as ‘‘blue phase III’’ or ‘‘blue fog’’ in cholesteric
liquid crystals, for which a theory based on liquid-gas-type
first-order transition is the currently most successful inter-
pretation [10–14]. This condensation interpretation makes
blue fog a very appropriate name for the phase below the
coexistence temperature. We will first show, starting from a
microscopic action for a quantum helimagnet, that there is
an attractive interaction between chiral fluctuations de-
scribed by  , which makes a gas-liquid-like condensation
of these degrees of freedom possible for appropriate values
of T and P. Assuming that this condensation can be iden-
tified with the observed temperature scale T0�P�, we will
focus on experimental predictions that follow from this
proposal.

Let us start with a Landau-Ginzburg-Wilson (LGW)
functional appropriate for a quantum helimagnet that
adds a DM interaction to a ferromagnetic action:

SDM�M	 � Sfm�M	 
 c
Z
dxM�x� � �r�M�x�	; (1a)

Sfm�M	 �
1

2

Z
dxdyM�x���x� y�M�y�



u
4

Z
dx�M2�x��2: (1b)

The two-point vertex � reads, in Fourier space,

��p; i!n� � t
 ap2 
 bj!nj=jpj: (1c)

Here x � �x; �� is a four-vector that comprises position x
and imaginary time �,

R
dx �

R
V dx

R1=T
0 d�. p is a wave

vector, and !n � 2�Tn denotes a bosonic Matsubara fre-
quency. M is the order parameter field with components
Mi�i � 1; 2; 3� whose expectation value is proportional to
the magnetization. t, a, b, c, and u are the parameters of the
LGW theory; they are functions of T and P. V is the system
volume. Sfm is Hertz’s action for a quantum ferromagnet
[15,16]. The additional term in SDM is the chiral DM term.
The sign of c determines the handedness of the helix; we
will take c > 0 without loss of generality.

For the Gaussian propagator Gij�p; i!n� �

hMi�p; i!n�Mj��p;�i!n�i, we obtain from Eq. (1)

Gij�p; i!n� �
1

�2�p; i!n� � c
2p2 ���p; i!n��ij

� icpl�ijl � c
2pipj=��p; i!n�	: (2)

An analysis of the eigenvalue problem given by the qua-
dratic form Gij shows that the paramagnetic phase is
unstable against the formation of helical order for t <
c2=4a. The instability first occurs at jpj � q0 � c=2a,
the pitch of the helix. t�Tc; P� � c2=4a thus determines
Tc in Fig. 1 in a mean-field approximation.

We now consider the completeness of the action given
by Eq. (1). The only chiral term so far is the quadratic-
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in-M DM term with coupling constant c, and the action
SDM is the magnetic analog of the action for chole-
steric liquid crystals that was the starting point for the
theory developed by Lubensky and Stark [10]. However,
symmetry allows for a quartic chiral term of the formR
dx�M � �r�M��2. It is easy to see that such a term is

indeed generated by a perturbative renormalization-group
procedure, with a negative definite coupling constant
0>�d1 / �u2c2. Another quartic term that is allowed
by symmetry and generated by renormalizing the action S
is �d2

R
dxM2�M � �r�M��, with 0>�d2 / �u2c.

Adding these two terms to Eq. (1a), we obtain our final
LGW action, with d1; d2 > 0,

S�M	 � SDM�M	 � d1

Z
dx�M�x� � �r�M�x��	2

� d2

Z
dxM2�x��M�x� � �r�M�x��	: (3)

The d1 term is conceptually crucial for the physical picture
we are proposing. The DM term ensures a nonzero expec-
tation value hM � �r�M�i � 0 everywhere in the phase
diagram. The presence of d1 > 0 implies an attractive
interaction between the chiral fluctuations described by
M � �r�M� [20]. This, in turn, means that the chiral
fluctuations may condense into a chiral liquid as the tem-
perature is lowered, with a discontinuous behavior of hM �
�r�M�i across a first-order phase transition. This is the
central idea of the present Letter.

The above considerations suggest considering the com-
posite field  �M � �r�M� an order parameter for a
possible chiral first-order phase transition. It is thus desir-
able to construct an effective action in terms of  . The
simplest way to do this is to perform a Hubbard-
Stratonovich decoupling of the combined d1 and d2 terms
in the action, Eq. (3), with  �x� the auxiliary field.
Alternatively, one can constrain M � �r�M� to  by
means of a Lagrange multiplier field that is later integrated
out [10]. Either method yields an effective action which
contains all terms allowed by symmetry and which leads to
the same partition function as the original action. If one
integrates outM, one obtains an action in terms of  alone,
which is of the form of a LGW action that describes a
liquid-gas transition [21]. This is not very illuminating,
since the  -correlation functions are not directly measur-
able. It is, therefore, advantageous to integrate out only the
‘‘fast’’ (i.e., large-momentum and high-frequency) compo-
nents of the fieldM and write the theory in terms of  and
the slow components of M, whose correlation functions
are directly measurable. If we denote the slow components
ofM by the same symbol for simplicity, we thus obtain the
following final effective action for chiral fluctuations  and
slow magnetization fluctuations M:

Seff�M;  	 � SDM�M	 
 S � 	 
 Sc�M;  	: (4)

The first part of the effective action has the same functional
form as the action SDM given by Eq. (1), only the parame-
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ters have different values. The chiral part S � 	 is a LGW
functional for a scalar order parameter with no invariance
under the transformation  ! � ,

S � 	 �
Z
dx�r 2�x� � h �x�


 sjr �x�j2 � v 3�x� 
 w 4�x�	: (5)

For suitable parameter values,  can thus undergo a first-
order phase transition. Finally, the coupling term reads

Sc�M;  	 �
Z
dx�g1M�x� � �r�M�x�	 �x�


 g2M
2�x� �x�	: (6)

g1 > 0, g2 > 0 have the same sign as d1, d2. The coupling
constants r, h, s, etc., are functions of temperature and
pressure, as are the coupling constants of the starting LGW
theory in Eq. (1). The structures of all terms in the action
Seff are governed by symmetry requirements. Once one has
introduced the pseudoscalar order parameter  in addition
to M, one therefore can, in principle, just write down Seff

based on symmetry considerations.
In what follows, we will assume that the first-order

transition inherent in the theory occurs in the experimen-
tally accessible range of P and T and can be identified with
the observed temperature scale T0. We will now discuss
some simple observable consequences of this proposal. For
simplicity, we will treat  in mean-field approximation,
 �x� � h �x�i �  � const.  increases discontinuously
as one crosses the coexistence curve T0�P� from above, and
the discontinuity goes to zero as one approaches the critical
point that marks the end of the coexistence curve T0�P�;
see Fig. 1.

Observable consequences of the first-order transition
arise from the coupling of the chiral order parameter  to
the magnetization via Eq. (6). In our mean-field approxi-
mation, which treats  as a constant, this coupling simply
renormalizes the terms quadratic in M in the action SDM,
leading to renormalized coupling constants

cR � c
 g1 ; tR � t
 g2 ; (7a)

and a renormalization of the vertex �, Eq. (1c), given by

�R�p; i!n� � tR 
 ap
2 
 bj!nj=jpj: (7b)

Since the proposed first-order transition occurs within the
magnetically disordered phase, the terms of higher order in
M are not qualitatively important; they can be treated
perturbatively and lead to further renormalizations of the
Gaussian action. The physical magnetic susceptibility ten-
sor �ij�p; i!n� � hMi�p; !n�Mj��p;�!n�i, therefore,
has the same form as the Gaussian propagator given by
Eq. (2), but it now depends on the chiral order parameter  ,

�ij�p; i!n� �
1

�2
R�p; i!n� � c

2
Rp

2 ��R�p; i!n��ij

� icRpl�ijl � c2
Rpipj=�R�p; i!n�	: (7c)
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In particular, the thermodynamic magnetic susceptibility
�ij � �ij�m, defined as �ij � limp!0

R
d!Im�ij�p; !


i0�=! is  dependent,

�m � 1=tR: (8)

We now discuss these results. The energy-resolved neu-
tron scattering cross section d2�=d�d!, with � the solid
angle and ! the frequency or energy, is related to the
quantity ��q� � ��ij � q̂iq̂j��ij�q; i!n � 0� by [21]

��q� � const�
Z 1
�1

d!
1

!

�
1� e�!=T

�
d2�
d�d!

: (9)

From Eq. (7c), one finds for this weighted frequency
average of the cross section

��q� � 2
tR 
 aq2

�tR 
 aq2�2 � c2
Rq

2 : (10)

For c2
R=4a < tR < c2

R=a, the system is in the disordered
phase, and ��q� has a maximum at q � q0 > 0 with

aq2
0 � cR

����������
tR=a

q
� tR: (11)

A measure for the height of the peak at q0 is

��q0�=��0� � 1=�2
���
y
p
� y�; (12)

which depends only on y � c2
R=tRa. The peak is higher and

sharper for smaller tR (at fixed cR).
The theory thus yields, in the disordered phase not too

far from the boundary to long-range magnetic order, a
sharp peak in ��q� at a wave number on the same order
as the pitch of the helix in the ordered phase, in qualitative
agreement with experiment [7,22]. Upon crossing the first-
order transition from chiral liquid to the gas,  decreases
and the peak in ��q� becomes less pronounced [23], again
in qualitative agreement with the interpretation of T0 as a
chiral first-order transition.

Two predictions of other observable effects are (i) a
latent heat Q across the coexistence line T0�P� (the abso-
lute value of Q will be small, since the transition takes
place at low temperatures) and (ii) a discontinuity of the
magnetic susceptibility �m across T0�P� [see Eq. (8)], even
though no magnetic transition occurs at that temperature.
Again, this effect will be small since g2 must be small in
order for the first-order transition to occur in the first place
[23]. If such signs of a first-order transition are observed, it
would also be worthwhile to look for the critical point (CP
in Fig. 1), which will be characterized by critical fluctua-
tions in the Ising universality class.

The present theory cannot easily explain the magnitude
of the increase in the neutron scattering observed below T0.
We note that the original form of the Lubensky-Stark
theory for liquid crystals [10] also did not explain the
huge increase observed by light scattering in the blue fog
phase. Later theories that took into account more sophisti-
cated correlation effects did find anomalously large fluc-
tuations [12–14], and we expect the same to be true for the
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present theory. A quantitative understanding of the anom-
alously large scattering below T0 may also be needed to
understand the NFL transport behavior mentioned in the
introduction.

Finally, we need to discuss the relation between the
present theory and related treatments of chiral liquid crys-
tals, as the very possibility of such a relation has been
questioned. Early work on blue phases in liquid crystals
focused on double-twist cylinder configurations of the
director. In this context, Wright and Mermin [24] have
argued that there cannot be analogs of blue phases in
helical magnets, and they bolstered this argument by
free-energy considerations at the mean-field level. These
arguments do not apply to our proposal, for several rea-
sons. (i) It has since become clear that blue phase III needs
to be considered separately from the other blue phases.
Double-twist cylinder configurations are not central to the
current understanding of blue phase III; they are just one of
many speculations concerning local order in this phase
[25]. (ii) The free-energy argument of Ref. [24] is most
applicable to the crystalline blue phases I and II because
entropic contributions that arise in disordered phases are
not taken into account. (iii) The free-energy argument
breaks down when the terms with coupling constants
d1; d2 are included in the free-energy functional.

Given that a magnetic analog of the blue fog phase or
blue phase III cannot be ruled out, an obvious first step is to
construct a theory analogous to the one put forward in
Ref. [10], which is what we have done above. There are
two main differences between the two theories. One is the
purely technical point that we deal with a quantum vector
order parameter (the magnetization) instead of a tensor
classical one (the director). The other is the existence in
our theory of the couplings d1 and d2 in Eq. (3). These
terms are allowed by symmetry and also arise in the
explicit derivation sketched above. The attractive sign of
d1 is crucial, since it forms the physical basis for a con-
densation scenario. In the final effective action, these terms
give rise to the coupling constants g1 and g2 in Eq. (6). The
analog of the former was also present in Ref. [10], although
its sign was not obvious.
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