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We consider a single electron in a 1D quantum dot with a static slanting Zeeman field. By combining
the spin and orbital degrees of freedom of the electron, an effective quantum two-level (qubit) system is
defined. This pseudospin can be coherently manipulated by the voltage applied to the gate electrodes,
without the need for an external time-dependent magnetic field or spin-orbit coupling. Single-qubit
rotations and the controlled-NOT operation can be realized. We estimated the relaxation (7;) and
coherence (7,) times and the (tunable) quality factor. This scheme implies important experimental

advantages for single electron spin control.
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Stimulated by electron-spin-based proposals for quan-
tum computation [1], a growing interest has emerged in
realizing the coherent manipulation of a single electron
spin in a solid-state environment. The application of the
electron’s spin—rather than its charge—as a quantum bit
(qubit) is motivated by its potentially long coherence time
in solids and the fact that it comprises a natural two-level
system. Single electron spin resonance (SESR) plays a key
role in realizing electron-spin-qubit rotation. Importantly,
SESR is also the prime tool for determining the single
electron spin coherence time 7, in confined solid-state
systems such as quantum dots (QDs). The induced Rabi
oscillations can be read out via electron transport [2] or
optically [3], giving an estimate for 7,. SESR was detected
in paramagnetic defects in silicon [4] and for nitrogen
vacancies in diamond [5], but not in semiconductor QDs
so far. Realizing SESR in QDs is hard, not least because of
the necessary high-frequency (~10 GHz) magnetic field in
a cryogenic (~100 mK) setup. Waveguides and micro-
wave cavities as used in conventional ESR [6] cause seri-
ous heating, limiting the operation temperature to ~1 K.
Ongoing work in our group focuses on generating ac
magnetic fields by an on-chip microscopic coil [7].

In this Letter, we propose a new SESR scheme that
eliminates the need for an externally applied ac magnetic
field, and with the potential of very high and tunable
quality factors. An ac voltage is applied to let an electron
in a QD oscillate under a static slanting Zeeman field. This
effectively provides the electron spin with the necessary
time-dependent magnetic field. Note the analogy with the
Stern-Gerlach experiment, where the spin and orbital de-
grees of freedom are coupled by employing an inhomog-
enous magnetic field. The spatial oscillation of the electron
within the QD involves the hybridization of orbital states,
as schematically depicted in Fig. 1(a) for the case of the
two lowest orbital states, n = 1, 2. Charge qubits based on
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double QDs [8] offer great tunability, but suffer from short
coherence times (~1 ns) [9]. Spin qubits, on the contrary,
enable long coherence times (~1 ws) [10], but are much
harder to control, as pointed out above. Here, we present a
hybrid charge-spin system that is promising both in terms
of tunability and coherence. Analogously, the combination
of the flux and charge degrees of freedom has proved to be
fruitful in superconducting qubits [11]. We stress that in
our system spin-orbit (SO) coupling is not required, as
opposed to earlier work on electron spin control based on
g-tensor modulation [12] and on electric fields [13].

A possible realization of the system is presented in
Fig. 2. A 1D conductor such as a carbon nanotube or
semiconductor nanowire is gated by ferromagnetic elec-
trodes that define both the tunnel barriers of the QD and the
slanting magnetic field. Alternatively, the slanting Zeeman
field could be provided by a static inhomogeneity in the
nuclear spin polarization or in the g factor. The total
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FIG. 1 (color online). (a) Schematic representation of how a
spatial oscillation between wave functions |+) and |—) involves
hybridization of multiple orbital states. (b) Energy spectrum of a
quantum dot with two orbital levels (level spacing A,;) and
constant Zeeman energy gy, with or without a magnetic field
gradient bg;. The lowest levels, |G..), constitute a qubit. |E.)
are excited states.
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FIG. 2. Model of the 1D QD in a slanting Zeeman field.
Ferromagnetic gate electrodes (dark gray) are located at either
end of the dot and are magnetically polarized in the plus or
minus x direction, creating a magnetic field gradient bg;. A
uniform magnetic field B is applied in the z direction. The spin
in the dot is controlled by applying an oscillating voltage V.
between the two gates.

magnetic field is given by B = bg; zi, + (By + bg; x)i_,
where B, is the external uniform magnetic field parallel to
the z axis and byg; is the z-direction gradient of the field
parallel to the x axis (the middle of the QD corresponds to
z=20). A true 1D system is assumed with an electron
strongly confined in the x and y directions. Therefore, the
inhomogeneous term along the z axis, bg;xi,, can be
eliminated (which is there to let B obey Maxwell’s
equations).

The Hamiltonian is Hy = Hyg + Hy,, where Hyy =

©+ V(2) — gupBoS.. and Ho, = —gupbs zS,, with

= 50, o the Pauli spin matrices, g the effective g factor,
and up the Bohr magneton [14]. V(z) is the confinement
potential of the QD with length L. The eigenvalues of H,
are £,, = £, + 3&o,0, and the eigenfunctions (z|n, o) =

¢,(z), where n=1,2,..., o= *1, and &, is the
spinor. We define the Zeeman energy &g, = |gupByl,
which is assumed to be smaller than the orbital energy
level separation A, ,, = &, — &, < U, with U the charg-
ing energy. The nonzero matrix elements of H,, are
(m, —a|Hyln, o) =iM,,,, with a coupling energy
M,,=EgY,, where Eg; = —gugbg L characteriz-
ing the strength of the slanting field, and the form factor
Yo = [dzd(2) § ().

By requiring the confining potential to have a mirror
symmetry, i.e., V(z) = V(—z), the diagonal coupling en-
ergy elements vanish, namely, M, , = 0. We employ per-
turbation theory up to the second order in Eg; and obtain
the ground-state energy for a pseudospin o, G, = g+

2m

121 —
80; 421 o 800, and its wave function |G,) =

CO, 0) + S20CVN2L —0) + 3,20CH12n + 1, 0)
[15]. Since we assumed A, > g, the two lowest energy
states |G,) and |G_) represent an energetically isolated
qubit (see Fig. 1). We can disregard higher energy states,
such as |E ). For a rectangular confining potential, we find

_i(_l)lﬁ—n 21(1+2n)
P W [(14+2n)>—412 P>
2‘) 72, we have

for the form factor Y, =
while for a harmonic potential V(z) =
I+ 8,4/n,

mlwo. Therefore, Y,,, is negligible for large |n — m|, and

You410 = Ourrn/nt + where we set L =

we consider only M, and M, 3, which is exact for the
harmonic potential. We deﬁne the effective Zeeman energy
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We consider the qubit rotat10n induced by an ac electric
field. The time-dependent perturbation H;(f) = eV,.(¢) £ is
applied to the system by introducing an oscillating signal
Vae(t) = Vi f(2) to the gate electrodes, as shown in Fig. 2.
Since H,(¢) is an odd function of z and is independent
of spin, only the off-diagonal matrix elements of H; re-
main, (Go|H|G_,) ~ (C1) + C12 )eV()Yy = Le,f(0),
and the diagonal elements are zero for any order.
Therefore, the effective Hamiltonian of our qubit is H, =
te.0, + e f(t)o,, which is formally equivalent to the
conventional ESR Hamiltonian [16]. For a sinusoidal per-
turbation f(f) = coswt at resonance (hw = ¢.), the time
required for the 77 operation, i.e., |G, ) — |G_), is given by
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Since we hybridize the spin and orbital degrees of free-
dom, orbital relaxation processes harm the spin coherence.
We find that acoustic phonon scattering is the dominant
relaxation mechanism for the energies relevant in our
system. The electron-phonon scattering Hamiltonian is

He'Ph = ZAq(eiqu; + HC)
q
_ Z(A“,;O'x + Azg-z)b; + H.c, (2)
q
= Lous[B. (0o, + B,(o.] ®)

where g is the phonon wave number, A, is the coupling
constant, and b;r is the phonon creation operator. In Eq. (2),
we project H,,, to the qubit base, where the effective
coupling constants are A} = )lq(lle,”"ﬂIZ)(C(lT)+ + C(ll),)
and AZ = A,(1]e=[3)(C, — CPL). B.() (r=1xy2)
represents the fluctuating magnetic field caused by pho-

nons. A standard Born-Markov approximation [16] gives
relaxation (7)) and coherence (7,) times as follows:

T ! = kul(e,) + ky(e,), (4)
TEpLonon = (2T1)7] + kzz(o); (5)

where &, (hw) = 1(gup)?* [ drcos(wT)B(1)B,(t + 7))
with (---), representing the thermal average. The de-
phasing term k_,(0) related to B,(r)o, is negligible since
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A M . .
i~ 1.2 <1 and is shown to be absent in the zero
q 9, 3

frequency limit. This situation is similar to that of a spin
qubit with SO interaction [17,18]. The relaxation rate 7 1
is then

2 e
! = 72|A2|25(81 - hwq)cothﬂzz
q
Eg Y154, 1>2 1
~ = , (6)
< A%,l - 8(2)z TP(SZ)

with hw, the phonon energy, 8 = 1/(kgT), and the re-
laxation time 7 ,(E) defined in analogy with Fermi’s golden
rule for a transition from level 2 to 1 with energy transfer E.
The coherence time is obtained by

ot = Tohonon + Toel (7

2total — * 2phonon 2spin’

where we included the generic spin coherence time Tgyip,
which is the “pure” coherence time of the electron spin in
the QD. The upper bound of the quality factor of the one-
qubit operation is characterized by 27 divided by ¢, of
Eq. (1),

Q

~2A2‘1Tp(81) eVO <1 _ 8%2) (8)

Th |ESL| A%1 )

Importantly, the quality factor is tunable by controlling the
amplitude of the ac voltage modulation, V.

For the practical implementation of our scheme, 1D
systems with small electron-phonon coupling and/or
weak SO coupling are favorable. Single wall carbon nano-
tube QDs are very suitable, because of the absence of
piezoelectricity and the weak deformation potential cou-
pling [19]. SO coupling does not play a role either. QDs in
semiconductor (e.g., SiGe) nanowires are also good can-
didates, since 1D phonons couple weakly to the electron
orbitals. Here we estimate 7; and Q of GaAs 1D QDs
embedded in bulk AlGaAs. Since the phonon character is
3D in this system, the results are worse than for the more
suitable systems given above. Figure 3(a) shows the low-
temperature (SBe, > 1) relaxation rate caused by bulk
acoustic phonons in a QD with longitudinal parabolic
confinement iwy = 1 meV and a transversal confinement
of 10 meV. Eg; =1 ueV, corresponding to bg =
1.16 T/um, which can be realized with a ferromagnetic
material [20]. Of the three acoustic phonon scattering
mechanisms, transversal piezoelectric scattering is domi-
nant for low By, where T is of the order of 10 ms. For
comparison, the typical relaxation time from higher levels,
ie., |[E<) — |G+) in Fig. 1(b), is much shorter, ~10 ns,
dominated by the deformation potential scattering. Note
that the contribution of SO interaction (Dresselhaus cou-
pling) is very small (7,50 ~ 10° s) in 1D QDs, in contrast
to disk-shaped dots as examined in Ref. [17]. Figure 3(b)
shows Q for various confinement potentials (dot length L)
with bg; = 1.16 T/um, Vi = 10 uV [21,22], and ¢, ~

relaxation rate

quality factor O

10 15
magnetic field B, (T)

FIG. 3. (a) Relaxation rate T "in a 1D GaAs QD as function
of external magnetic field B, due to different phonon scattering
mechanisms: deformation potential (dashed line), longitudinal
piezoelectric (dotted line), transversal piezoelectric (dash-dotted
line). The solid line is the total scattering rate. Inset: schematic
derivation of the pure electron spin coherence time Ty, from
the dependence of the total coherence time T, on the strength
of the slanting field E; . (b) By dependence of the quality factor
Q for a single-qubit 7 operation.

400 ns for hwy = 1 meV. A quality factor Q = 10* is
often used as a threshold for viable quantum computa-
tion [23].

We study the time evolution of the density matrix of the
four levels |G.), |E-), including V,.(¢) and phonon scat-
tering. Near the resonant condition hw = ¢, |E.) are
almost empty and do not contribute to the qubit dynamics
at all. 75, can be evaluated using a time-resolved mea-
surement of the Rabi oscillation (see, e.g., [2]). After
rotating the qubit over a certain angle, a projection mea-
surement is done into |G_) or |G, ) using a single-shot
readout scheme based on spin-to-charge conversion [24].
Both energy selectivity and spin selectivity of tunnel-
ing out of the QD are applicable for our pseudospin qubit
system. The readout error introduced by level mixing
to n =2 by the slanting field is negligible, namely, of
the order (C{))2 ~ 1076 Importantly, the pure electron
spin coherence time T, can be evaluated by extrapolat-
ing the T dependence on Eg; where Toloo, % E3;
[see Eq. (6)], as shown in the inset of Fig. 3(a).
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For a universal set of quantum gates, a two-qubit gate is
required. Here we present a realization of a two-qubit gate
based on two coupled dots in series [8]. Although it has
been pointed out that an inhomogeneous magnetic field
introduces swap errors [25,26], we show that correct swap
operation is possible in our system. The two-qubit
Hamiltonian is H =Y ,_; g Ho + Hp + Hy, where
H ; is the single-dot Hamiltonian, i = L, R (ac field is
off, &, = 0), H ; represents the tunneling between the
dots, and H |, represents the interdot interaction V. By
projecting the Hamiltonian onto the qubits, we find

5’-[0i = %Zacjacm + Unyny, 9
o
H,= Z[t,,czrrcR,, +spcl cpo +Hel (10
(o8

3-[V = VZ”L(T”R(T” (] 1)

where c;, annihilates an electron of pseudospin ¢ in dot i.
A spin-dependent tunneling term ¢, and a tunneling term
with spin flip s, emerge, which are defined by ¢, =
C%ty, + C(IBLC(II(ZRZ‘ZZ + 2C(12(3t13, Sg = (C(1](3L + C(ll—)lfr)tna
where ¢, represents the tunneling amplitude from level n
in dot L to level m in dot R. The relevant lowest four
eigenenergies and their eigenfunctions are obtained by the
effective exchange Hamiltonian using local spin operators:

HEX = JySL Sk, + J1(SpxSpe + SL}'SR)’)

+ éz(SLz + SRz)r (12)
22+ -
where J = (Z}_‘t})— (éi(‘%z_va)g, J =%, and &, =
. MR .
e, (1 — #) with s = 1 (s; + M—:L;sl). It is well known

that the SO interaction makes the exchange Hamiltonian
anisotropic [27]. In contrast to the SO case, where the
antisymmetric term dominates, the dominant anisotropic
correction of HH y in a slanting field is the symmetric
term. Nevertheless, controlled-NOT operation can be ac-
complished by this anisotropic exchange Hamiltonian sim-
ply by replacing J of the Heisenberg Hamiltonian by Jj,
and single-qubit operation (SESR) by replacing g, by &,
as is shown in Refs. [26,27].

In conclusion, we propose a viable qubit based on com-
bining the orbital and spin degrees of freedom of an
electron in a QD placed in a slanting Zeeman field. Both
single-qubit rotation and the controlled-NOT operation are
demonstrated. This qubit is easier to manipulate than a spin
qubit and has a better quality factor than a charge qubit.
The concept is general and can be applied to a range of
systems, such as single wall carbon nanotubes, GaAs, and
SiGe QDs. This scheme also allows for the measurement of
the intrinsic single electron spin coherence time.
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