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Superfluid Density of Strongly Underdoped Cuprate Superconductors
from a Four-Dimensional XY Model
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A new phenomenology is proposed for the superfluid density �s of strongly underdoped cuprate
superconductors based on recent data for ultraclean single crystals of YBa2Cu3O7�x. We show that the
puzzling departure from Uemura scaling and the decline of the slope as the Tc � 0 quantum critical point
is approached can be understood in terms of the renormalization of quasiparticle effective charge by
quantum fluctuations of the superconducting phase. We then employ a (3� 1)-dimensional XY model to
calculate, within particular approximations, the renormalization of �s and its slope, explain the new
phenomenology, and predict its eventual demise close to the quantum critical point.
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FIG. 1 (color online). Behavior expected in the vicinity of the
�3� z�D-XY quantum critical point in the doping-temperature
plane. Solid line Tc�x� represents the superconducting phase
transition; dashed lines are crossovers.
The manner in which superconductivity in high-Tc cup-
rates gives way to Mott insulating behavior is a long-
standing puzzle of fundamental importance. The anoma-
lous behavior is revealed most strikingly in studies of the
doping (x) and temperature (T) dependence of the super-
fluid density �s [1,2]. As the doping is reduced, both �s and
the critical temperature Tc decline while the maximum
superconducting gap �0 increases. This dichotomy, along
with the empirical Uemura relation Tc / �s [3], led to
suggestions by numerous authors [4–8] that the supercon-
ducting transition in the underdoped cuprates is a phase-
disordering transition and the pseudogap state [9] above Tc
should be thought of as a ‘‘phase-disordered’’ d-wave
superconductor. Experiments indeed show evidence for
magnetic vortices [10], strong fluctuation diamagnetism
[11], and fermionic nodal quasiparticles [12] in the pseu-
dogap state of high-Tc compounds. In addition, there is
credible evidence that the superconducting transition in
many compounds is in the 3D-XY universality class [13–
16] with a wide critical region, exactly as one would expect
near a phase-disordering transition.

The focus of the present Letter is to obtain a theoretical
understanding of the behavior of �s in strongly underdoped
cuprates. Theoretical efforts to date have overwhelmingly
addressed the phenomenology summarized by Lee and
Wen [2]. However, recent experiments performed in un-
precedented proximity to the Mott insulator in ultraclean
single crystals of YBa2Cu3O7�x (YBCO) [17–19] and in
high quality films [20] are quietly overturning the old
paradigm: (i) Unlike optimally doped and weakly under-
doped samples, the strongly underdoped data show no
visible 3D-XY critical region in samples with Tc & 25 K;
rather, the approach to Tc is mean-field-like. (ii) Measure-
ments indicate a relationship between the critical tempera-
ture and the T � 0 superfluid density of the form

Tc / �
�
s ; with � ’ 0:4–0:7; (1)

a significant departure from the Uemura scaling. (iii) The
overall doping and temperature dependence can be pa-
06=96(4)=047007(4)$23.00 04700
rametrized as

�s�x; T� ’ Ay2 � By�kBT�; (2)

where y � Tc�x�=T
max
c is a measure of the doping x,

Tmax
c � 93 K is the maximum critical temperature for

YBCO, A ’ 66 meV, and B ’ 9:5. The demise of super-
conducting order described by Eq. (2) signals a profound
departure from predictions of resonating-valence-bond–
type theories and earlier parametrizations of �s�x; T�
[2,21]. In what follows, we demonstrate how this new
phenomenology follows simply and elegantly from an
effective theory describing a phase-fluctuating d-wave
superconductor.

The absence of any visible 3D-XY fluctuation region in
the data is surprising, since one would naively expect phase
fluctuation effects to become more pronounced in the
underdoped region as the system approaches the Mott
insulator. Upon closer inspection, however, one finds that
the observed behavior is entirely consistent with the be-
havior of a system approaching a quantum critical point
[22,23]. Indeed, the Tc�x� line in Fig. 1 must terminate at a
quantum critical point (QCP), which by continuity must be
in the universality class of the (3� z)-dimensional XY
model, the imaginary time � providing the extra z dimen-
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sions (z � 1 being the dynamical critical exponent). Since
D � 4 is the upper critical dimension for XY-type models,
our QCP sits either right at (z � 1) or above (z > 1) its
upper critical dimension, and, thus, we expect mean-field
critical behavior, possibly with unimportant logarithmic
corrections if z � 1 [22,23]. As indicated in Fig. 1, when
crossing the finite-temperature transition close to the QCP,
one still encounters the classical fluctuation region, but its
width is now much reduced, and it is likely invisible in
experiments.

There is a simple consistency check for the above sce-
nario. If the underdoped region is indeed controlled by the
�3� z�D-XY point, then there exists a simple scaling
relation between Tc�x� and �s�x; 0� which reads [22,24]

Tc / �
z=�d�2�z�
s : (3)

For d � 2, we recover the Uemura scaling, irrespective of
the value of z. In d � 3, as appears to be the case in YBCO,
we get Tc / �

z=�1�z�
s , consistent with the experimental ob-

servation of Eq. (1), if 1 � z � 2.
It would thus appear that general arguments based on the

proximity of the underdoped cuprates to a putative �3�
z�D-XY QCP naturally explain items (i) and (ii) in the
foregoing list. The scaling analysis leading to Eq. (3),
however, holds only when the ‘‘bare’’ parameters of the
theory describing the critical degrees of freedom exhibit no
significant temperature dependence. In cuprates, quasipar-
ticles in the vicinity of d-wave nodes give rise to a linear
temperature dependence in �s which is likely to modify the
scaling. In order to address this issue and item (iii), one
needs to go beyond the general scaling arguments and
consider a specific model. In the rest of the Letter, we
formulate and study a particular version of the quantum XY
model. We show that, when nodal quasiparticles are in-
cluded through the effective parameters of this model, it
leads to a phenomenology that is consistent with the data.

The simplest model showing the XY-type critical behav-
ior is given by the Hamiltonian

HXY �
1

2

X
ij

n̂iVijn̂j �
1

2

X
ij

Jij cos�’̂i � ’̂j�: (4)

Here n̂i and ’̂i are the number and phase operators repre-
senting Cooper pairs on site ri of a cubic lattice and are
quantum mechanically conjugate variables, �n̂i; ’̂j	 �
i�ij. The sites ri do not necessarily represent individual
Cu atoms; rather one should think in terms of a ‘‘coarse
grained’’ lattice model valid at long length scales where
microscopic details no longer matter. Classical [25,26] and
quantum [24,27] versions of the XY model have been
employed previously to study phase fluctuations in the
cuprates.

The first term in HXY describes interactions between
Cooper pairs; we take
04700
Vij � U�ij � �1� �ij�
e2

jri � rjj
: (5)

The second term in HXY represents the Josephson tunnel-
ing of pairs between the sites; Jij � J for nearest neighbors
along the a and b directions, J0 along c, and 0 otherwise. In
the absence of interactions, J clearly must be identified as
the physical superfluid density. We thus take

J � J0 � �T; (6)

with � � �2 ln2=��vF=v�, as in a BCS d-wave supercon-
ductor. The T-linear term describes suppression of the
mean-field superfluid stiffness by nodal excitations.

On a qualitative level, the physics of the quantum XY
model (4) can be understood in terms of the competition
between the fluctuations in the local phase ’̂i and charge
n̂i. These are constrained by the uncertainty relation �’i 

�ni � 1, which implies that interactions, which tend to
localize charge, also necessarily promote phase fluctua-
tions, which then erode the superfluid density. Ultimately,
for sufficiently strong Vij, a superconductor-insulator (SI)
transition takes place. Charge becomes localized, and an
insulating pair Wigner crystal is formed [28]. The latter can
be viewed as a superconductor with completely disordered
phase. In the rest of the Letter, we assume that the strength
of interactions increases with underdoping and use Vij to
tune our model across the SI transition.

To gain quantitative insight into the behavior of �s in the
XY model (4), we employ two complementary approaches:
the self-consistent harmonic approximation (SCHA)
[25,27], valid for weak interactions, and an expansion in
the small order parameter [29,30], valid for strong inter-
actions in the vicinity of the SI transition.

In the SCHA, one replaces HXY by the ‘‘trial’’ harmonic
Hamiltonian

Hhar �
1

2

X
ij

n̂iVijn̂j �
1

2

X
hiji

Kij�’̂i � ’̂j�2: (7)

The constants Kij � K�K0� are identified as the renormal-
ized ab-plane (c-axis) superfluid densities [25] and are
determined from the requirement that Ehar � hHXYihar be
minimal. The cuprates are characterized by small values of
the anisotropy ratio � � J0=J. Anisotropy essentially in-
terpolates between the cases d � 2 and d � 3 and, thus,
profoundly affects the approach to the thermal phase tran-
sition. However, for the quantum phase transition, the
effect is very weak. We illustrate this point below by
solving the limiting cases � � 1 (isotropic 3D supercon-
ductor) and � � 0 (decoupled 2D layers) analytically and
the intermediate case 0<�< 1 numerically.

The trial Hamiltonian Hhar is quadratic in n̂i and ’̂j and
can, thus, be easily diagonalized,

Hhar �
X

q
@!q

�
ayqaq �

1

2

�
; @!q � 2

���������������
KZqVq

q
; (8)
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FIG. 2 (color online). Panel (a) shows the SCHA result, the
critical theory Eq. (14), and the interpolation discussed in the
text (dashed line) for the case d � 3 with short range interac-
tions. Inset: The solid line is the exact solution of Eq. (11a), and
the dashed line is its approximation Eq. (11b). Panel (b) displays
�s�x; T� from Eq. (11b) for several values of S. The inset
illustrates the effect of anisotropy: The curves (bottom to top)
correspond to � � 0:0; 0:3; 0:6; 1:0. Solid lines are solutions of
Eq. (11a) for d � 2; 3 and short range interaction (we find
S=U 
 0:040 for d � 3 and S=U 
 0:058 for d � 2). Dashed
lines are numerical solutions of the corresponding anisotropic
equations.
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where Vq is a Fourier transform of Vij and Zq �Pd
��1 sin2�q�=2�, d � 2; 3. For short range interactions

Vq ! const as q! 0; we have !q � q, i.e., an acoustic
phase mode. For Coulomb interactions, Vq � 1=q2 as q!
0; we have !q ! !pl, i.e., a gapped plasma mode. Simple
power counting then shows that at low T the contribution
from the phase mode to the superfluid density is

��ph
s �

�
Td�1; short range interaction
e�!pl=T; Coulomb interaction:

(9)

In either case, the low-T behavior of �s will be dominated
by the quasiparticle contribution included via Eq. (6).
However, as we demonstrate below, quantum fluctuations
of the phase lead to strong renormalizations of both the
T � 0 amplitude of �s and the slope �.

Using hcos�’̂i � ’̂j�ihar � exp�� 1
2 h�’̂i � ’̂j�

2ihar	, an
identity valid for harmonic Hamiltonians, we obtain

Ehar � hHXYihar �
�������
KS
p

� Je�
�������
S=K
p

; (10)

with the parameter
���
S
p
� �2dN��1P

q
�����������
VqZq

p
describing

the aggregate strength of interactions. Minimizing Ehar

with respect to K, we find

K � Je�
�������
S=K
p

(11a)

’ J�1�
��������
S=J

p
�; (11b)

where the last expression approximates the exact solution
over much of the regime of interest [see inset in Fig. 2(a)].
The exact solution of Eq. (11a) exhibits a first order
transition at S 
 0:541J. This is an artifact of the SCHA;
close to the transition, phase fluctuations become of the
order of �=2, and the harmonic Hamiltonian (8) is no
longer a legitimate approximation to HXY . Below, we
devise an interpolation formula based on Eq. (11b) that
will represent an acceptable solution everywhere except
very close to the SI transition.

To obtain the leading temperature dependence, we sub-
stitute J � J0 � �T into Eq. (11b) and expand to leading
order in T:

�s�x; T� ’ J0�1�
����������
S=J0

q
� � �T�1� 1

2

����������
S=J0

q
�: (12)

This is our main result. As expected, both the amplitude
and the slope are reduced by quantum fluctuations. Cru-
cially, we observe that the T � 0 amplitude decays faster
than the slope. In particular, for

����������
S=J0

p
not too large, the

above expression is consistent with the experimentally ob-
served behavior Eq. (2) if we identify y ’ �1� 1

2

����������
S=J0

p
�. In

the language of Ref. [21], the parameter y can be inter-
preted as the quasiparticle charge renormalization factor.

If we follow Lee and Wen [2] and determine Tc as the
temperature at which the superfluid stiffness vanishes, then
Eq. (12) implies, to leading order, that �s�x; 0� � T2

c , in
agreement with the empirical relation Eq. (1). The agree-
ment with the scaling result (3) is, however, entirely co-
04700
incidental since our description of the superfluid density in
the SCHA involves an interplay between nodal quasipar-
ticles and noncritical quantum phase fluctuations.

For arbitrary anisotropy 0<�< 1, the SCHA yields a
pair of equations for K and K0 with structure similar to
Eq. (11a). These are easily solved numerically [31], and we
give some representative results in the inset in Fig. 2(b).
Inspection of this data reveals that all the character-
istic features of the d � 2; 3 limiting cases remain in place
for general anisotropy. For realistic anisotropies � �
10�2–10�3, the results become practically indistinguish-
able from the d � 2 case.

In the regime of strong fluctuations, it is useful to con-
sider the grand canonical partition function for HXY ex-
pressed in the path-integral representation as a trace over
Bose field ’i���, Z �

R
D’ exp��S=@�, with the action

S �
1

2

Z 	

0
d�
X
ij

� _’iV�1
ij _’j � Jij cos�’i � ’j�	: (13)

Following Refs. [29,30], we introduce an auxiliary com-
plex field  i��� to decouple, via the familiar Hubbard-
Stratonovich transformation, the cosine term in the above
action. For short range interaction, the decoupled action is
7-3
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local in the ’i��� field and the D’ functional integral can
be performed exactly, to any order in powers of  and its
derivatives. The field  assumes the role of the order
parameter of the SI transition. Keeping only terms up to
j j4 and replacing the spatial lattice by the continuum
yields the desired field-theoretic representation Z �R
D exp��Seff=@�, where

S eff �
Z
d�ddx

�
rj j2�

u
2
j j4 �

1

2
jr j2 �

1

2c2 j@� j
2

�
;

and r � �d=a2
0��1� 4dJ=U�, u � �7dad�4

0 =8�J2�4d=U�3,
and c2 � �4da2

0=3��U=4d�3=J, with a0 the lattice spacing.
The above action Seff predicts a second order SI tran-

sition when r changes sign, i.e., when U � Uc � 4dJ.
Anisotropy again interpolates smoothly between the limit-
ing cases [31] and gives Uc � 4�2� ��J. In �3� 1� di-
mensions, we expect mean-field theory to work near this
transition. In particular, the superfluid density will be given
by the saddle-point value of the order parameter j 0j

2 �
�r=u, which yields

�s�x; T� �
8

7

�
U

12J

�
2
�J�U=12�; (14)

with J given by Eq. (6) and doping parametrized byU. The
Coulomb interaction can also be incorporated in Seff by
introducing a gauge field, but the analysis near the critical
point of the resulting action is more involved [30] and
beyond the scope of this Letter.

The main panel in Fig. 2(a) combines Eq. (14) with the
SCHA result adapted to the case of a short range inter-
action, for which S � 0:48�U=12�. The actual solution
must interpolate smoothly between SCHA at small

��������
S=J

p
and critical theory near the transition. The dashed line
represents an empirical extension of Eq. (11b) to K �
J�1�

��������
S=J

p
� 
�S=J�	, with 
 � 0:625, which we expect

to be very close to the exact solution, as can be verified by
quantum Monte Carlo or a similar technique. This inter-
polation still exhibits the leading behavior of Eq. (12),
consistent with experimental data [17–20] as summarized
by Eq. (2).

Our results, thus, lend further support to the picture of
underdoped cuprates as superconductors with a large pair-
ing gap scale but superfluid stiffness that is severely sup-
pressed by Mott physics. In our approach, the latter is
modeled by the charging energy terms in the XY
Hamiltonian (4) which significantly renormalize both the
T � 0 amplitude of the superfluid density �s�x; T� and the
quasiparticle effective charge reflected by the slope of its
T-linear term. A key new observation of this work is that
the systematics of these renormalizations matches that
found in underdoped cuprates. In particular, the suppres-
sion of the amplitude is faster than that of the slope, in
agreement with the experimental data [17–20] summa-
rized in Eq. (2). As illustrated in Fig. 2, this behavior
persists over a wide range of interaction strengths. Close
to the SI transition, the critical theory Seff takes over. In
04700
this regime, �s�x; T� is given by Eq. (14), which implies
that the slope of the T-linear term stops decreasing and, in
fact, begins to increase. Thus, our model offers a testable
prediction that very close to the SI transition the phenome-
nology of Eq. (2) will ultimately break down. While the
quantitative details of these predictions depend on the
specifics of our model and the approximations employed,
the general features are controlled by the symmetry and
dimensionality and should be robust.
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and Z. Tešanović for stimulating discussions and corre-
spondence. This work was supported by NSERC, CIAR,
and the A. P. Sloan Foundation.
7-4
[1] W. N. Hardy et al., Phys. Rev. Lett. 70, 3999 (1993).
[2] P. A. Lee and X.-G. Wen, Phys. Rev. Lett. 78, 4111 (1997).
[3] Y. J. Uemura et al., Phys. Rev. Lett. 62, 2317 (1989).
[4] V. J. Emery and S. A. Kivelson, Nature (London) 374, 434

(1995).
[5] M. Randeria, cond-mat/9710223.
[6] M. Franz and A. J. Millis, Phys. Rev. B 58, 14 572 (1998).
[7] L. Balents, M. P. A. Fisher, and C. Nayak, Phys. Rev. B 60,

1654 (1999).
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