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Structure of the Pairing Interaction in the Two-Dimensional Hubbard Model
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Dynamic cluster Monte Carlo calculations for the doped two-dimensional Hubbard model are used to
study the irreducible particle-particle vertex responsible for dx2�y2 pairing in this model. This vertex
increases with increasing momentum transfer and decreases when the energy transfer exceeds a scale
associated with theQ � ��;�� spin susceptibility. Using an exact decomposition of this vertex into a fully
irreducible two-fermion vertex and charge and magnetic exchange channels, the dominant part of the
effective pairing interaction is found to come from the magnetic, spin S � 1 exchange channel.
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Numerical studies of the doped two-dimensional Hub-
bard model have shown that strong dx2�y2 pairing correla-
tions develop as the temperature is lowered [1] and recent
work has provided evidence that the Hubbard model near
half filling does have a superconducting ground state [2–
4]. In spite of this progress, the goal of using numerical
methods to determine the nature of the pairing mechanism
has proven elusive. In this Letter we develop a new ap-
proach which combines numerical and diagrammatic
methods to determine the structure of the pairing interac-
tion in the doped two-dimensional Hubbard model. Our
study will focus on the 4-point vertex shown in Fig. 1,
calculated with a quantum Monte Carlo dynamic cluster
approximation (QMC-DCA) [5–7]. From this vertex and
the QMC-DCA results for the single-particle Green’s func-
tion, we have determined the irreducible particle-particle
and particle-hole vertices. The leading low temperature
eigenvalue of the Bethe-Salpeter equation for the
particle-particle channel is shown to have dx2�y2 symmetry.
We then examine the momentum and energy dependence
of the irreducible particle-particle vertex. Decomposing
this vertex into the sum of a fully irreducible two-fermion
vertex and particle-hole exchange magnetic (S � 1) and
charge density (S � 0) channels, we find that the dominant
contribution to the pairing interaction comes from the
magnetic (S � 1) exchange.

The Hubbard model that we study has a near-neighbor,
one-electron hopping t and an on-site Coulomb interaction
U:
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We will take U=t � 4 and adjust � so that the average site
occupancy hnii � 0:85. We have carried out dynamical
cluster Monte Carlo calculations [5–7] for the 24-site k
cluster shown in the inset of Fig. 2.
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For a 2D system the dynamical cluster approximation
maps the original lattice model onto a periodic cluster of
size Nc � L2

c embedded in a self-consistent host [5–7].
The essential assumption is that short-range quantities,
such as the self energy and its functional derivatives (the
irreducible vertex functions) are well represented as dia-
grams constructed from the coarse-grained Green’s func-
tion. To this end, the first Brillouin zone is divided into Nc
cells, with each cell represented by its center wave vector
K surrounded by N=Nc lattice wave vectors labeled by ~k.
The reduction of the N-site lattice problem to an effective
Nc-site cluster problem is achieved by coarse graining the
single-particle Green’s function, i.e., averaging G�K� ~k�
over the ~k within a cell which converges to a cluster
Green’s function Gc�K�. Consequently, the compact
Feynman diagrams constructed from Gc�K� collapse onto
those of an effective cluster problem embedded in a host
which accounts for the fluctuations arising from the hop-
ping of electrons between the cluster and the rest of the
system. The compact cluster quantities are then used to
calculate the corresponding lattice quantities.

For example, the DCA cluster one- and two-particle
Green’s functions that we calculate have the standard finite
temperature definitions

Gc��X2; X1� � �hT�c��X2�c
y
��X1�i (2a)
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Here, X‘ � �X‘; �‘�, where X‘ denotes a site in the DCA
cluster, �‘ is the imaginary time, T� is the usual �-ordering
operator, and c�y�� �X2� destroys (creates) a particle on the
cluster with spin �. Fourier transforming on both the
cluster space and imaginary time variables gives Gc�K�
and Gc2�K4; K3;K2; K1� with K � �K; i!n; ��. Using
Gc�K� and Gc2�K4; K3;K2; K1�, one can extract the cluster
four-point vertex � from
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Then, using Gc and �, one can determine the irreducible
particle-particle and particle-hole vertices �pp and �ph

from the Bethe-Salpeter equations shown in Figs. 1(a)
and 1(b). There is a second particle-hole vertex but it is
simply related to �ph. Note that �ph and �pp do not have a
subscript c, since both the lattice and the cluster share these
compact quantities. Because of the rotational invariance of
the Hubbard model, it is convenient to separate the
particle-particle channels into singlet and triplet and the
particle-hole channels into a magnetic part which carries
spin S � 1 and a charge density part which has S � 0.

In order to determine the nature of the low temperature
correlations, we use these irreducible vertices and the
lattice single-particle Green’s function to calculate the
Bethe-Salpeter eigenvalues and eigenfunctions in various
channels. For example, in the particle-particle channel
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with a similar equation using �ph for the particle-hole
channel. Here, the sum over k0 denotes a sum over both
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FIG. 1. Bethe-Salpeter equations for (a) the particle-particle
and (b) the particle-hole channels showing the relationship
between the full vertex, the particle-particle irreducible vertex
�pp, and the particle-hole irreducible vertex �ph, respectively.
(c) Decomposition of the irreducible particle-particle vertex �pp

into a fully irreducible two-fermion vertex ^irr plus contributions
from the particle-hole channels. All diagrams represent DCA
cluster quantities, including the Green function legs.
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momentum k0 and Matsubara !n0 variables. We decom-
pose k0 � K0 � ~k0. By assumption, irreducible quantities
like �pp and�� do not depend on ~k0, allowing us to coarse-
grain the Green function legs, yielding an equation that
depends only on coarse-grained and cluster quantities
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with �	pp0 �K
0� � Nc
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In Fig. 2 we show the leading eigenvalue versus tem-
perature for the pairing, charge density, and magnetic
channels for U=t � 4 and hni � 0:85. As the temperature
is reduced, the leading particle-hole eigenvalue occurs in
the magnetic channel and has a center of mass momentum
Q � ��;�� and !m � 0. Previous Monte Carlo calcula-
tions on 8� 8 lattices show that for this doping the peak
response is slightly shifted from ��;��, but our 24-site
cluster lacks the resolution to see this [8]. This antiferro-
magnetic eigenvalue grows and then saturates at low tem-
peratures. The leading particle-particle eigenvalue is a spin
singlet and, as shown in the inset of Fig. 3, its eigenfunc-
tion �dx2�y2

has dx2�y2 symmetry. The !n frequency de-

pendence of the normalized gap function �dx2�y2
�K; !n� at

the antinodal point K � ��; 0� is plotted in Fig. 3. As
shown, it is even in !n, corresponding to a dx2�y2-wave
singlet, even frequency pairing. Also plotted in this figure
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FIG. 2 (color online). Leading eigenvalues of the Bethe-
Salpeter equation [e.g., Eq. (5)] in various channels for U=t �
4 and a site occupation hni � 0:85. The Q � ��;��, !m � 0,
S � 1 magnetic eigenvalue is seen to saturate at low tempera-
tures. The leading eigenvalue in the singlet Q � �0; 0�, !m � 0
particle-particle channel has dx2�y2 symmetry and increases
toward 1 at low temperatures [2]. The largest charge density
eigenvalue occurs in the Q � �0; 0�, !m � 0 channel and satu-
rates at a small value. The inset shows the distribution of k points
for the 24-site cluster we have studied.
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FIG. 3 (color online). The Matsubara frequency dependence of
the eigenfunction �dx2�y2

�K; !n� of the leading particle-particle

eigenvalue of Fig. 2 for K � ��; 0� normalized to ��K; �T�
(solid line, red online). Here, !n � �2n� 1��T with T �
0:125t. The Matsubara frequency dependence of the normalized
magnetic spin susceptibility 2	�Q; !m�=�	�Q; 0� � 	�Q; 2�T�	
for Q � ��;�� versus !m � 2m�T (dashed line, green online).
Inset: The momentum dependence of the eigenfunction
�dx2�y2

�K; �T� normalized to �dx2�y2
��0; ��; �T� shows its

dx2�y2 symmetry. Here, !n � �T and the momentum values
correspond to values of K which lay along the dashed line shown
in the inset of Fig. 2.

PRL 96, 047005 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
3 FEBRUARY 2006
is the!m dependence of the Q � ��;�� spin susceptibility
	�Q; !m� normalized to coincide with �dx2�y2

�K; !n� at

!n � �T. The Matsubara frequency which enters the gap
function corresponds to a fermion frequency !n � �2n�
1��T, while !m � 2m�T for the spin susceptibility, lead-
ing to the interlacing of points shown in Fig. 3. From the
momentum and frequency dependence of the gap function
��K; !n�, it follows that the irreducible particle-particle
vertex is an increasing function of the momentum transfer
and is characterized by the same energy scale that enters
the spin susceptibility 	�Q; !m�. At larger values of U it
will be interesting to see if there is an increased tendency
for a finite response at large Matsubara frequencies indi-
cating a contribution from the upper Hubbard band.

To learn more about the mechanism responsible for
dx2�y2 pairing in the doped Hubbard model, it is useful to
decompose the pairing interaction �pp as shown in
Fig. 1(c). Here, the irreducible particle-particle vertex is
given as a combination of a fully irreducible two-fermion
vertex ^irr and partially reducible particle-hole exchange
contributions [9,10]. For the even frequency, even momen-
tum part of the irreducible particle-particle vertex
�pp

even�K;K0� � 1=2��pp�K;K0� � �pp�K;�K0�	, we obtain

�ppeven�K;K0� � ^irr�K;K0� �
1
2�d�K;K0� �

3
2�m�K;K0�

(6)

with K � �K; i!n�. The subscripts d and m denote the
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charge density �S � 0� and magnetic �S � 1� particle-
hole channels

�d=m�K;K0� �
1
2��d=m�K � K

0;K0;�K�

� �ph
d=m�K � K

0;K0;�K�
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� �ph
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On the right hand side, the first label is for the center of
mass, and the second and third for the relative wave vectors
and frequencies. Using the Monte Carlo results for G and
�, we have solved the t-matrix equations shown in
Figs. 1(a) and 1(b) to determine �pp, �d and �m. Then,
substituting these into Eq. (6), we have determined the
fully irreducible vertex ^irr.

Monte Carlo results for the irreducible particle-particle
vertex �pp obtained from the 24-site cluster approximation
are shown in Fig. 4(a). Here, we set !n � !0n � �T, K �
��; 0� and K0 takes momentum values along the dashed
line shown in the inset of Fig. 2. As the temperature is
lowered, �pp increases as the momentum transfer q � K�
K0 increases as one expects for a d-wave pairing interac-
tion. To understand the origin of this behavior, the contri-
butions of the particle-hole �S � 0� charge density and
�S � 1� magnetic channels are plotted in Figs. 4(c) and
4(d) respectively and the contribution from the fully irre-
ducible vertex ^irr is shown in Fig. 4(b). It is clear that the
dominant contribution to �pp comes from the S � 1 mag-
netic channel. The charge density channel and the fully
irreducible vertex are basically flat in momentum and
change relatively little as the temperature is reduced.
Thus, based upon the decomposition of the irreducible
particle-particle interaction shown in Fig. 4, we conclude
that the pairing mechanism in the doped two-dimensional
Hubbard model is mediated by the exchange of S � 1
particle-hole spin-fluctuations.

To summarize, we have studied the pairing interaction
�pp of a doped hni � 0:85, two-dimensional Hubbard
model with U=t � 4. We found that the eigenfunction
��K; i!n� of the leading low temperature eigenvalue in
the particle-particle pairing channel is an even frequency
singlet with dx2�y2 symmetry. The momentum and fre-
quency dependence of ��K; i!n� imply that �pp increases
as the momentum transfer q � K�K0 increases and that
its dynamics is set by the same characteristic energy scale
as the spin susceptibility. It was also found to increase as
the temperature was lowered, saturating when the leading
antiferromagnetic eigenvalue stopped growing. Finally,
using an exact decomposition of �pp, we showed that the
dominant contribution to this interaction comes from the
S � 1 particle-hole channel. We believe that the calcula-
tion and analysis of the four-point vertex provides a useful,
unbiased method for determining the nature of the leading
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FIG. 4 (color online). (a) The irreducible particle-particle vertex �pp versus q � K�K0 for various temperatures with !n � !n0 �
�T. Here, K � ��; 0� and K0 moves along the momentum values of the 24-site cluster which lay on the dashed line shown in the inset
of Fig. 2. Note that the interaction increases with the momentum transfer as expected for a d-wave pairing interaction. (b) The q
dependence of the fully irreducible two-fermion vertex ^irr. (c) The q dependence of the charge density (S � 0) channel 1

2 �d for the
same set of temperatures. (d) The q dependence of the magnetic (S � 0) channel 3

2 �m.
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correlations of interacting many-electron systems and the
structure of the mechanisms responsible for them.
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