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Using the Kubo formula approach, we study the effect of electron interaction on thermal transport in the
vicinity of a metal-insulator transition, with a granular metal as our model. For small values of
dimensionless intergrain tunneling conductance, g� 1, we find that the thermal conductivity surprisingly
shows a phononlike algebraic decrease, ��T� � g2T3=E2

c even though the electrical conductivity obeys an
Arrhenius law, ��T� � ge�Ec=T ; therefore the Wiedemann-Franz (WF) law is seriously violated. We ex-
plicitly show that this violation arises from nonmagnetic bosonic excitations of low energy that transport
heat but not charge. At large values of intergrain tunneling, we find it plausible that the WF law weakly
deviates from the free-electron theory due to potential fluctuations. Implications for experiment are
discussed.
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At low temperatures, transport in many metals is domi-
nated by elastic scattering of electrons. In the absence of
phase transitions (such as superconductivity) and collec-
tive modes, the Wiedemann-Franz (WF) law [1] relates the
electrical (�) and thermal (�) conductivities through a

universal Lorenz number, L0 �
��T�
T��T� where L0 �

�2k2
B

3e2 is
Sommerfeld’s value for the Lorenz number. Deviations
from the WF law beyond those due to phonons and inelas-
tic processes such as electron-phonon scattering, indicate a
presence of collective modes that discriminate between
charge and energy flow. Such deviations are expected to
get more pronounced as one approaches a metal-insulator
transition.

The issue of excess electronic thermal conductivity in
disordered metals with interacting electrons has been a
topic of much theoretical debate in recent years. The WF
law has been affirmed for any strength of scattering [2],
disorder [3], or magnetic field [4]. In Refs. [5,6], the WF
law was shown to hold on account of a Ward identity.
Subsequently,there have been many studies including the
effect of electron interaction, some of which have sug-
gested deviations from the WF law [7–12].

In this Letter we study the effect of Coulomb blockade
on the thermal conductivity of a nonmagnetic granular
metal. At not too low temperatures [13] transport in a
granular metal is due to a competition of incoherent inter-
grain tunneling and Coulomb blockade [13,14]. The result-
ing model captures the physics of coupling of the
continuum of electron states in the metallic grains with
electromagnetic fluctuations. Granular metals differ from
Hubbard models in having a near-continuum of excitations
in each metallic grain. Their study is relevant beyond
artificially prepared granular metals [15,16]. For example,
in more insulating regimes, these materials show a similar
electrical conductivity to disordered semiconductors in the
variable-range hopping conduction regime. In more con-
ducting regimes, granular metal physics appears to de-
scribe transport in underdoped cuprate superconductors
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[17,18] where there is electronic phase separation into
metallic and insulating regions [19].

We summarize our main results. We obtain for the first
time an explicit Kubo formula for the thermal conductivity
of the Ambegaokar-Eckern-Schön (AES) model [14]
through a double functional differentiation of the partition
function with respect to an appropriate source field [20].
For small values of the dimensionless intergrain conduc-
tance, g� 1, we identify low-energy nonmagnetic bo-
sonic excitations that contribute to heat transport but not
charge transport. Consequently, as our calculations show,
the thermal conductivity decreases only algebraically,
��T� � g2T3=E2

c, quite unlike the electrical conductivity
of a regular granular array, which obeys an Arrhenius law,
��T� � ge�Ec=T . These bosonic modes are the nearly con-
tinuous particle-hole excitations in the metallic grains and
have no counterpart in a half-filled Hubbard model with
U� Ec where particle-hole excitations are gapped. Since
the electrical conductivity is insensitive to these neutral
excitations, the algebraic thermal conductivity we calcu-
late distinguishes between a granular metal and a Hubbard
model. This finding also reminds us of the excess heat
transport through excitons proposed recently [21,22] in
the context of disordered semiconductors. For strong tun-
neling, g� 1, we find it plausible that the Lorenz number
weakly deviates from the Sommerfeld value L0 due to
Coulomb interaction.

Consider the following microscopic Hamiltonian for a
granular metal array ignoring spin interactions,

H �
X
x�

�
 yx��x� x� 	 Ec

X
x
�Q̂x �Q0�

2

�
�1	 hx�

	
1

2

X
hxx0i;��0

�t��
0

xx0 
y
x� x0�0 	 H:c:��1	 hx�; (1)

where x labels the grains and � labels the states within each
grain, �x� � �x� ��. Q̂x �

P
� 
y
x� x� is the charge on
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grain x, Ec is the grain charging energy, and t��
0

xx0 is the matrix element for nearest-neighbor hopping. Small differences in
temperature of different grains are modeled through the introduction of ‘‘gravitational’’ potentials hx [20] that couple to
the grain electron energy. If � � 1=T is the average inverse temperature, then hx � ��x � �� is the small excess of � on
the xth grain.

The strong Coulomb interaction in Eq. (1) makes it difficult to calculate correlation functions directly using the electron
operators. We therefore decouple the interaction to obtain an action for a Hubbard-Stratonovich field, V, representing the
electrostatic potential on each grain,

S0
V���
1

4Ec

X
x

Z �

0
d	

V2
	x

1	h	x
	

X
xx0;��0

Z �

0
d	t��

0

xx0 
y
x� x0�0

�
1	

h	x	h	x0

2

�
	
X
x�

Z �

0
d	 yx�
@		V	x	�x��1	h	x�� x�;

(2)

where 	 is imaginary time, and the hx sources are now 	 dependent. We then make the gauge transformation  x� !
e�i’	x x� and Vx � i@	’	x. This eliminates the  yV term, at the cost of replacing t by a gauge-dependent hopping
amplitude, ~t��

0

	xx0 � t��
0

xx0e
i’	xx0 , where ’	xx0 � ’	x � ’	x0 . The Matsubara fields ’	x satisfy bosonic boundary conditions,

’�x � 2�kx 	 ’0x, where kx 2 Z is the winding number at site x.
Next we integrate out the fermions and expand the electron determinant to O�h~t2�,

S
’; h� �
1

4Ec

X
x
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�@	’	x�
2

1	 h	x
	 tr
Gx��	; 	�h	x�x�� 	

1

2
tr
Gx��	1; 	2�~t

��0
	2xx0Gx0�0 �	2; 	1�~t

�0�
	1x0x�

	
1

2
tr
Gx��	1; 	2�~t

��0
	2xx0Gx0�0 �	2; 	1�~t

�0�
	1x0x�h	2x 	 h	2x0 ��

	 tr
Gx��	1; 	2�h	2x�x�Gx��	2; 	3�~t
��0
	3xx0Gx0�0 �	3; 	1�~t

�0�
	1x0x�; (3)
where ‘‘tr’’ means a sum over all indices, and Gx��	; 	0� �
T
P
n
e�i
n �	�	

0�

i
n��x�
is the electron Green function

Gx��	; 	0� � 
n��x�� ��	�	0 �e��x��	�	0�: (4)

Here 
n � 2�T�n	 1=2� and �	 is the unit step function.
We will also need the momentum-summed Green function,
G�	; 	0� �

P
�Gx��	; 	0�, which is independent of the grain

label. If the temperature is much larger than the Thouless
energy for intergrain diffusion, T � jtj2
��F�, and if the
grains are much larger than the Fermi wavelength of the
metal, it suffices to expand the electron determinant to
second order in tunneling [23].

The (time-dependent) energy of the xth grain, E	x, is
obtained by differentiating the action in Eq. (3) with re-
spect to h	x. Dropping any constant terms, and using the
above Green functions, we have,

E	x��
1

4Ec
�@	’	x�

2

	
X

x0�xa

jtj2
�Z

	1

G�	1;	�G�	;	1�cos�’	xx0 �’	1xx0 �

	
X
��0

Z
	1	2

�x�Gx��	1;	�Gx��	;	2�Gx0�0 �	2;	1�

�exp
i�’	2xx0 �’	1xx0 ��

�
; (5)

where we assumed that the bare tunneling element is a
constant. To obtain an expression for the energy current
J	xx0 from grain x to a neighboring grain x0, we employ the
continuity equation, @	E	x � i

P
x0J	xx0 . We will need the

equation of motion for ’	x from Eq. (3) (with sources set
04680
to zero) and the Green functions defined in Eq. (4). The
symmetrized energy current, j�E�	xx0 �

1
2 �J	xx0 � J	x0x�, is

j�E�	xx0 � i�gT2
Z
	0

1

2
�@	’	x 	 @	’	x0 �

1

sin2
�T�	� 	0��

� sin�’	xx0 � ’	0xx0 �

� �gT2
Z
	0

�
@	

1

sin
�T�	� 	0��

�
1

sin
�T�	� 	0��

� sin�’	xx0 � ’	0xx0 �; (6)

where we have introduced the dimensionless intergrain
tunneling conductance g � 2�
2��F�jtj2 and used
G�	; 	0� � �
��F�T

sin�T�	�	0� . To obtain the Kubo formula for ther-
mal conductivity, we need to calculate the nonlocal specific
heat through a double differentiation of the partition func-
tion with respect to h	x, and then extract the thermal
conductivity using the continuity equation.

The same result may be obtained more easily by intro-
ducing a source field f	x that can generate the energy
current, h	x � i@	f	x. In Eq. (2) we expand to linear order
in h	x and use the field f	x instead of h	x. Next we
integrate out the conduction electrons and expand to sec-
ond order in tunneling. The resulting action is

S
’;f��
1

4Ec

X
x

Z
	
�@	’	x�

2

	
1

2
tr
Gx��	1;	2�t̂��

0

	2xx0Gx0�0 �	2;	1�t̂�
0�
	1x0x�; (7)

t̂ ��
0

	xx0 � ~t��
0

	xx0 
1	 if	xx0 ���x� 	 �x0�0 �=2	 V�av�	xx0 ��; (8)
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where f	xx0 � f	x � f	x0 and V�av�	xx0 � �V	x 	 V	x0 �=2. The
energy current in Eq. (6) can be obtained from Eq. (7)
using j�E�	xx0 
’; f� � �S
’; f�=�f	xx0 . This is similar to the
derivation of the electric current, with electric charge
replaced by electronic energy. The thermal conductivity
� may be obtained by further differentiation,

��!; T� � ia2�d 1

!

Z �

0
d	ei�n	K�E��	�

���������n!�i!	
; (9)
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Z
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��j�E�	2x;x	a
’;f�
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X
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Z
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�S
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�f	1x0;x0	a

���������f�0
; (10)

where !	 � !	 i�. The first term, which has come to be
known as the ‘‘diamagnetic’’ contribution ��d�, is a local
term in the sense that it is an average on a single bond. The
second term in Eq. (10) is a product of two energy currents,
and is also known as the ‘‘paramagnetic’’ contribution ��p�.
The diamagnetic contribution may be obtained by differ-
entiating Eq. (7) twice with respect to the source,

��d��!;T���ia2�d�
2gT3

!

Z �

0
d	�ei�n	�1�

�
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1
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�

�hcos�’	x;x	a�’0x;x	a�i
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:

(11)

Let us call the V-independent part of Eq. (11) the kinetic
contribution, ��d;K�, and the V-dependent part the potential
contribution ��d;V�. Equation (11) is similar to the known
expression for the diamagnetic contribution to the electri-
cal conductivity obtained in Ref. [24].

(A) Consider first weakly coupled grains, g� 1. Do a
perturbation expansion in g, � � ��1� 	 ��2� 	 � � � , where
��n� � gn. The diamagnetic parts of the electrical [24]
and thermal conductivities [Eq. (11)] involve the bond
correlator, �	 � hexpi�’	x;x	a � ’0x;x	a�i � ��0� 	

��1� 	 � � � . Because of the Coulomb blockade, ��0�
	 �

1
Z

P
q1;q2

e��q
2
1	q

2
2��Ec�2Ec	�1�q1�q2� is exponential in 	. So

��d;1� � ge2a2�d�2e��Ec 	 2�Ece�2�Ec�;

��d;K;1� � gTa2�d
2�
2

3 e
��Ec 	 8

3��Ec�
3e�2�Ec�:

(12)

In contrast, ��1�
	 has a power-law 	 dependence [25],

which is a result of the 1=	2 interaction in the AES action,
Eq. (7), arising from particle-hole inelastic cotunneling:
��1�
	 �

2�gT2

E2
csin2��T	�

� 2�g
E2
c
�	, �	 �

T2

sin2��T	�
. It gives rise to

O�g2� terms in both the diamagnetic and paramagnetic
contributions to � and �. We have shown [25] in a previ-
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ous work that ��d;2� � ���p;2� � i�ga2�de2=!�2�g
E2
c
� �R

	�e
i�n	 � 1��2

	j�n!�i!	 �
4�
3 e

2a2�d�gTEc
�2; the power-

law terms in the electrical conductivity cancel [25], leaving
an Arrhenius law � � ��d;1� � e�Ec=T . Now consider the
O�g2� terms in the thermal conductivity. The dominant
contributions to both the diamagnetic and paramagnetic
terms arise from charge-neutral configurations (q1 � q2 �
0), and, unlike the O�g� terms, are not Arrhenius sup-
pressed:

��d;K;2� �
i�ga2�d

!

�
2�g

TE2
c

�Z
	
�ei�n	 � 1�	�	

���������n!�i!	
;
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4!

�
2�g

TE2
c

�Z
	
�ei�n	 � 1��0	�

0
	

���������n!�i!	
;

(13)

where 	 � T2
sin��T	���1@2
	
sin��T	���1. These two

terms have the same sign and do not cancel, ��d;K;2� �

3��p;K;2� � 12�3

15 a2�d�g
2T3

E2
c
�, and so the thermal conductivity

is only algebraically small,

��K;2� � �16�3=15��a2�dg2T3=E2
c�: (14)

This is the central result of our Letter. In the argument
above, the algebraic temperature dependence is an eventual
result of the particle-hole inelastic cotunneling processes
described by the AES action.

The potential energy contributions ��V;2� and ��V;2�,
which involve averages such as hV�av�	x;x	aV

�av�
0x;x	a �

cos�’	x;x	a � ’0x;x	a�i, turn out to be proportional to
�q1 � q2�

2. This immediately rules out neutral processes,
such as inelastic cotunneling, for which q1 � q2 � 0. The
O�g0� contribution to the above average can be shown to
be E2

c
P
q1;q2
�q1 � q2�

2e��q
2
1	q

2
2��Ec�2Ec	�1�q1�q2�, so that

��V;2� �O�e��Ec�, which can be neglected in comparison
with ��K;2�.

(B) Consider now the case where the dimensionless
intergrain tunneling conductance g is large, g �
�jtj2
��F�

2. One can show [24] that the diamagnetic con-
tribution to the electrical conductivity is ��d� �

e2a2�dg�1� 1
�gz lngEcT �. Comparing with Eq. (11), it is

evident that for the diamagnetic components, the kinetic
part of the thermal conductivity is simply related to the

electrical conductivity by ��d;K�=�T��d�� � �2k2
B

3e2 , where we
have restored the Boltzmann constant kB. So at this level
the WF law is obeyed. Next, consider the kinetic part of the
paramagnetic contribution to the thermal conductivity,
��p;K��T�. Reference [24] shows that ��p� � ��d�; adopting
a similar argument, one can show that ��p;K� is smaller than
��d;K� by a factor g�2, and furthermore it does not have a
logarithmic singularity. We have not yet considered the
extra contributions from the potential part, ��d;V� and ��p;V�.
Evaluating ��d;V� for example leads to corrections similar
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to those obtained in Ref. [12]. However, since the poten-
tial part ��p;V� of the paramagnetic term is of the order of
��d;V�, a proper treatment should consider both contribu-
tions. This could, in principle, lead to a different conclu-
sion from Ref. [12]. So at this stage we are only able to
make a weaker statement that for the strong tunneling case

at not too low temperatures (T � gEce
��gz), �

T� �
�2k2

B

3e2 	

O�g�1�. Thus the Lorenz number L is larger than
Sommerfeld’s free-electron value by O�g�1� corrections.

We conclude with a discussion of our results and com-
ments on existing and future experiments. We have shown
that thermal transport in granular metals at low tempera-
tures is dominated by cotunneling of low-energy electron-
hole pairs. These neutral excitations do not transport
charge. As a result, while the electrical conductivity for
weakly coupled grains is exponentially small in tempera-
ture, ��T� � e2ga2�de�Ec=T , the thermal conductivity is
only algebraically small, ��T� � a2�dk2

Bg
2T3=E2

c. The
particle-hole cotunneling process is physically equivalent
to a particle cotunneling loop. An electron executing a
cotunneling loop brings back its charge to the starting grain
and hence there is little change in the electrical conductiv-
ity. There is no requirement, however, that the returning
electron has exactly the same energy. This conservation of
grain charge but not grain energy in a cotunneling loop is at
the heart of the difference between heat and charge trans-
port. The energy gained by an electron due to nearest-
neighbor tunneling is of the order of �t2=Ec�, and the
tunneling probability is, roughly, �t=Ec�2. The number of
particle-hole excitations in each grain is of the order of

��F�T � 1, and the energy of a particle or hole is of the
order of T. This gives us a rough estimate ��T� / g2T3=E2

c,
in agreement with our detailed calculation. Experi-
mentally, Al-Ge granular systems in the g� 1 regime
[26] show a linear-T thermal conductivity with the value
of the Lorenz number somewhat larger than L0, L � 1:8L0

at the lowest temperatures measured. This is consistent
with our assessment.

Our predictions can be experimentally verified: even
though the g2T3=E2

c law we obtain for ��T� is reminiscent
of the T3 phonon contribution, it can be distinguished
experimentally through its dependence on g and Ec.
Besides, the electronic contribution may be of the order
of the phonon contribution as can be seen in the following
rough estimate. Let a denote the distance between grain
centers, l the phonon mean free path, c the speed of sound,
n the atomic number density, and �D the Debye tempera-
ture of the material. The ratio of the electronic and pho-
nonic thermal conductivities is then of the order of
r � �g�D=Ec�

2�kB�D�=�@ancl�. In a typical three-
dimensional granular metal, the grain diameter is of the
order of 100 Å and the insulating space between the grains
is about 10 Å. With �D � 300 K, Ec � 100 K, g & 1, a�
100 �A, l� 10 �A, [27] c� 103 m=s, and n� 1028 m�3,
we estimate r � g2 �O�1�.
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