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Magnetically Tunable Kondo–Aharonov-Bohm Effect in a Triangular Quantum Dot
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The role of discrete orbital symmetry in mesoscopic physics is manifested in a system consisting of
three identical quantum dots forming an equilateral triangle. Under a perpendicular magnetic field, this
system demonstrates a unique combination of Kondo and Aharonov-Bohm features due to an interplay
between continuous [spin-rotation SU�2�] and discrete (permutation C3v) symmetries, as well as U�1�
gauge invariance. The conductance as a function of magnetic flux displays sharp enhancement or
complete suppression depending on contact setups.
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FIG. 1. Triangular triple quantum dot in three-terminal (a) and
two-terminal (b) configurations.
Experimental analysis of the Kondo effect in simple
quantum dots (QDs) [1] treats the electron as a local
spin-1=2 magnetic moment devoid of orbital degrees of
freedom. These are absent also in theoretical discussions of
the Kondo effect in composite structures consisting of two
or three dots [2–5]. However, orbital effects, which play a
crucial role in real metals [6,7], become relevant also in
mesoscopic physics, e.g., when a multiple QD is fabricated
in a ring geometry, having discrete point symmetries. At
low temperature it can serve both as a Kondo-scatterer and
as a peculiar Aharonov-Bohm (AB) interferometer, since
the magnetic flux affects the nature of the QD ground and
excited states. A system of three dots forming a triangle has
been realized experimentally [8,9]. A recent experiment
studies a triangular trimer of Cr ions placed upon a gold
surface [10]. The underlying discrete orbital symmetry
results in additional degeneracies of the trimer spectrum,
which might induce a non-Fermi-liquid (NFL) regime [11].

In the present work, we analyze the physics of tunneling
through a triangular triple quantum dot (TTQD) in a mag-
netic field with one electron shared by its three identical
constituents (see Fig. 1). It exhibits an interplay between
continuous SU�2� electron spin symmetry, discrete point
symmetry C3v, and U�1� gauge invariance of electron
states in a magnetic field. The conductance of the device
is characterized by an unusual dependence on the magnetic
flux � through the triangle, displayed by sharp peaks or
narrow dips, depending on contact geometry. In a 3-
terminal geometry [Fig. 1(a)], sharp peaks arise since the
magnetic field induces a symmetry crossover SU�2� !
SU�4�. In a 2-terminal geometry [Fig. 1(b)], the Kondo
tunneling is modulated by the AB interference, which
blocks the source-drain cotunneling amplitude at certain
flux values. This Kondo-AB interplay is distinct from the
one studied in a mesoscopic AB interferometer with a QD
placed on one of its arms [12]. A symmetric TTQD in
contact with three metallic leads is described by the
Hamiltonian H � Hd �Hlead �Ht, expressed in terms
of dot and lead operators dj�, cj�, with j � 1; 2; 3, and
� �"; # . Hd describes an isolated TTQD,
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Here nj� � dyj�dj�, hjli � h12i; h23i; h31i, Q and Q0 are
intradot and interdot charging energies (Q� Q0), andW is
the interdot tunneling amplitude. Hlead describes electrons
in the respective electrodes,

Hlead �
X
jk�

�jkc
y
jk�cjk�; (2)

and Ht is the tunneling Hamiltonian,

Ht � V
X
jk�

�cyjk�dj� � H:c:�: (3)

The dot energy � is tuned by gate voltage in such a way that
the ground-state occupation of the isolated TTQD is N �
1. Consider first a TTQD with three leads and three iden-
tical channels [Fig. 1(a)]. Assuming V � W, the tunnel
contact preserves the rotational symmetry of the TTQD,
which is thereby imposed on the itinerant electrons in the
leads. It is useful to treat the Hamiltonian in the special
basis which respects the C3v symmetry, employing an
approach widely used in the theory of the Kondo effect
in bulk metals [6,13]. The Hamiltonian Hd �Hlead is
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Here ’ � 2�=3, while A and E form bases for two irre-
ducible representations of the group C3v. The Hamiltonian
of the isolated TTQD in this charge sector has six eigen-
states jDAi, jDEi. They correspond to a spin doublet (D)
with fully symmetric ‘‘orbital’’ wave function (A) and a
quartet doubly degenerate both in spin and orbital quantum
numbers (E). The corresponding single electron energies
are

EDA � �� 2W; EDE � ��W: (6)

To describe the orbital effect of an external magnetic field
B (perpendicular to the TTQD plane and inducing a flux �
through the triangle), one rewrites the spectrum as

ED��p� � �� 2W cos
�
p�

�

3

�
; (7)

such that for negative W and for B � 0, p � 0, 2�=3,
4�=3 correspond, respectively, to � � A;E�. Figure 2
illustrates the evolution of ED���� induced by B.
Variation of B between zero and B0 (the value of B corre-
sponding to the quantum of magnetic flux �0 through the
triangle) results in multiple crossing of the levels ED�.

The accidental degeneracy of spin states induced by the
magnetic phase � introduces new features into the Kondo
effect. In the conventional Kondo problem, the effective
low-energy exchange Hamiltonian has the form JS 	 s,
where S and s are the spin operators for the dot and lead
electrons, respectively [14]. Here, however, the low-energy
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FIG. 2 (color online). Upper panel: Evolution of the energy
levels EA (solid line) and E� (dashed and dash-dotted line,
respectively). Lower panel: Corresponding evolution of conduc-
tance (G0 � �e2=@).
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states of a TTQD form a multiplet characterized by both
spin and orbital quantum numbers. The effective exchange
interaction reflects the dynamical symmetry of the
Hamiltonian Hd [3,15]. The corresponding dynamical
symmetry group is identified not only by the operators
which commute with the Hamiltonian but also by operators
inducing transitions between different states of its multip-
lets. Hence, it is determined by the set of dot energy levels
which reside within a given energy interval (its width is
related to the Kondo temperature TK). Since the position of
these levels is controlled by the magnetic field, we arrive at
a remarkable scenario: Variation of a magnetic field deter-
mines the dynamical symmetry of the tunneling device.
Generically, the dynamical symmetry group which de-
scribes all possible transitions within the set fDA;DE�g
is SU�6�. However, this symmetry is exposed at too high
energy scale
W, while only the low-energy excitations at
energy scale TK � W are involved in Kondo tunneling. It
is seen from Fig. 2 that the orbital degrees of freedom are
mostly quenched, but the ground state becomes doubly
degenerate both in spin and orbital channels around � �
�2n� 1��, �n � 0;�1; . . .�.

Next we analyze the field dependent Kondo effect
variable degeneracy. It is useful to generalize the notion
of localized spin operator Si � j�i�̂ih�

0j [employing
Pauli matrices �̂i�i � x; y; z�] to Si��0 � j��i�̂ih�

0�0j, in
terms of the eigenvectors (4). Similar generalization ap-
plies for the spin operators of the lead electrons: si��0 �P

kk0c
y
�;k��̂ic�0;k0�0 . In zero field, � � 0, the rotation de-

grees of freedom are quenched at the low-energy scale. The
only vector which is involved in Kondo cotunneling
through a TTQD is the spin SAA � S. Applying the
Schrieffer-Wolff (SW) procedure, the effective exchange
Hamiltonian reads

HSW � JE�S 	 sE�E� � S 	 sE�E�� � JAS 	 sAA: (8)

The exchange vertices J� are

JE � �2V2���1
Q0 � ��1

Q �=3;

JA � 2V2�3��1
1 ���1

Q � 2��1
Q0 �=3;

(9)

with �1 � �F � �, �Q � ��Q� �F, and �Q0 �

��Q0 � �F. Note that JA > 0 as in the conventional SW
transformation of the Anderson Hamiltonian. On the other
hand, JE < 0 due to the inequality Q� Q0. Thus, two out
of three available exchange channels in the Hamiltonian
(8) are irrelevant. As a result, the conventional Kondo
regime emerges with the doublet DA channel and a
Kondo temperature,

T�A�K � D expf�1=jAg; (10)

where jA � �0JA, �0 being the density of electron states in
the leads.

At � � �2n� 1��, when the ground state of a TTQD
becomes a spin and orbital doublet, the symmetry of
Kondo center is SU�4�. This kind of orbital degeneracy
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is different from that of occupation degeneracy studied in
double quantum dot systems [16]. The 15 generators of
SU�4� include four spin vector operators SEaEb with a; b �
� and one pseudospin vector T defined as

T � �
X
�

jE�; �ihE�; �j; T � � �T �y;

T z �
1

2

X
�

�jE�; �ihE�; �j � jE�; �ihE�; �j�:
(11)

Its counterpart for the lead electrons is �� �P
k�c

y
E�k�

cE�k�, �z �
1
2

P
k��c

y
E�k�

cE�k� � c
y
E�k�

cE�k��.
The SW Hamiltonian is [17]

HSW�J1�SE�E� 	sE�E� �SE�E� 	sE�E��

�J2�SE�E� 	sE�E� �SE�E� 	sE�E��

�J3�SE�E� �SE�E�� 	sAA

�J4�SE�E� 	sE�E� �SE�E� 	sE�E��

�J5�SE�E� 	 �sAE� �sE�A��H:c:��J6T 	�; (12)

where the coupling constants are J1 � J4 � JA, J2 � J3 �
J5 � JE defined in (9) and J6 � V2���1

1 � ��1
Q0 �. Thus,

spin and orbital degrees of freedom of a TTQD interlace in
the exchange terms. The indirect exchange coupling con-
stants include both diagonal (jj) and nondiagonal (jl)
terms describing reflection and transmission cotunneling
amplitudes. The interplay between spin and pseudospin
channels naturally affects the scaling equations obtained
within the framework of Anderson’s ‘‘poor man scaling’’
procedure [14]. The system of scaling equations has the
following form:

dj1=dt � ��j2
1 � j

2
4=2� j4j6 � j2

5=2;

dj2=dt � ��j2
2 � j

2
4=2� j4j6 � j2

5=2;

dj3=dt � ��j
2
3 � j

2
5; dj6=dt � �j

2
6;

dj4=dt � ��j4�j1 � j2 � j6� � j6�j1 � j2�;

dj5=dt � �j5�j1 � j2 � j3 � j6=2:

(13)

Here ji � �0Ji and t � ln��0D�. Analysis of the scaling
Eq. (13) shows that the symmetry-breaking vertices j3 and
j5 are irrelevant, but the vertex j2, whose initial value is
negative, evolves into positive domain and eventually en-
ters the Kondo temperature,

T�E�K � D expf�2=�jA�1�
���
2
p
� � jE � 2j6g: (14)

We see from (14) that both spin and pseudospin exchange
constants contribute on an equal footing. Unlike the Kondo
Hamiltonian for N � 3 with equal J discussed in
Ref. [11], the NFL regime is not realized for N � 1
with HSW (12). The reason of this difference is that start-
ing with the Anderson Hamiltonian with finiteQ;Q0 in (1),
one inevitably obtains the anisotropic SW exchange
Hamiltonian for any N . As a result, the interchannel
04660
exchange makes the NFL unstable. However, TK is en-
hanced due to the inclusion of orbital degrees of freedom,
and this enhancement is magnetically tunable. It follows
from (7) that the crossover SU�2� ! SU�4� ! SU�2� oc-
curs 3 times within the interval 0<�< 6� and each level
crossing results in enhancement of TK from (10) to (14)
and back [18]. These field-induced effects may be observed
by measuring the two-terminal conductance Gjl through a
TTQD (the third contact is assumed to be passive).
Calculation by means of the Keldysh technique (at T >
TK) similar to that of Ref. [19] shows sharp maxima inG as
a function of magnetic field, following the maxima of TK
(lower panel of Fig. 2).

So far we have studied the influence of the magnetic
field on the ground-state symmetry of the TTQD. In a
two-lead geometry [Fig. 1(b)] the field B affects the
lead-dot hopping phases, thereby inducing an additional
AB effect [20]. The symmetry of the device is thereby
reduced since it loses two out of three mirror reflection
axes. The orbital doublet E splits into two states, but still
the ground state is jDAi. In a generic situation, the total
magnetic flux is the sum of two components � � �1 �
�2. In the chosen gauge, the hopping integrals in Eqs. (1)
and (3) are modified as W ! W exp�i�1=3� and V1;2 !
Vs exp��i��1=6��2=2�, and the exchange Hamiltonian
now reads

H � JsS 	 ss � JdS 	 sd � JsdS 	 �ssd � sds�: (15)

Cumbersome expressions for the exchange constants
Js��1;�2�, Jd��1;�2�, and Jsd��1;�2� will be presented
elsewhere. They depend on the pertinent domain in pa-
rameter space of phases �1;2. Applying the poor man
scaling procedure on the Hamiltonian (15) yields TK,

TK � D exp

(
�

2

js � jd �
�����������������������������������
�js � jd�2 � 4j2

sd

q
)
; (16)

and the conductance at T > TK reads [19]

G
G0
�

3

4

j2
sd

�js � jd�2
1

ln2�T=TK�
: (17)

The conductance G��1;�2� (17) obeys the Byers-Yang
theorem (periodicity in each phase) and the Onsager con-
dition G��1;�2� � G���1;��2�. We choose to display
the conductance along two lines �1���, �2��� in parame-
ter space of phases, namely, G��1 � �;�2 � 0� and
G��1 � �=2;�2 � �=2� (Fig. 3 left and right panels,
respectively). The Byers-Yang relation implies respective
periods of 2� and 4� in �. Experimentally, the magnetic
flux is applied on the whole sample as in Fig. 1(b), and the
ratio �1=�2 is determined by the specific geometry.
Strictly speaking, the conductance is not periodic in the
magnetic field unless �1 and �2 are commensurate.

The shapes of the conductance curves presented here are
distinct from those pertaining to a mesoscopic AB inter-
ferometer with a single correlated QD and a conducting
1-3
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FIG. 3 (color online). Conductance as a function of magnetic
field for �2 � 0 (left panel) and �1 � �2 � �=2 (right panel).
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channel [12,21] (termed the Fano-Kondo effect [21]). For
example, G��� in Fig. 3 of Ref. [21] (calculated in the
strong coupling regime) has a broad peak at � � �=2 with
G�� � �=2� � 1. On the other hand, G��� displayed in
Fig. 2 [pertinent to Fig. 1(a) and obtained in the weak
coupling regime] is virtually flux independent except
near the points � � �2n� 1�� (n integer) at which the
SU�4� symmetry is realized and G is sharply peaked. The
phase dependence is governed here by interference effects
on the level spectrum of the TTQD. The three dots share an
electron in a coherent state strongly correlated with the
lead electrons, and this coherent TTQD as a whole is a vital
component of the AB interferometer. In the setup of
Fig. 1(b), the Kondo cotunneling vanishes identically on
the curve Jsd��1;�2� � 0. The AB oscillations arise as a
result of interference between the clockwise and anticlock-
wise ‘‘effective rotations’’ of TTQD in the tunneling
through the f13g and f23g arms of the loop [Fig. 1(b)],
provided the dephasing in the leads does not destroy the
coherence of tunneling through the two source channels
[22]. On the other hand, in the calculations performed on
Fano-Kondo interferometers, G��� remains finite [21].
Another kind of Fano effect due to the renormalization of
electron spectrum in the leads induced by the lead-dot
tunneling similar to that in chemisorbed atoms [23] is
beyond the scope of this Letter.

To conclude, we have shown that spin and orbital de-
grees of freedom interlace in ring-shaped quantum dots,
thereby establishing the analogy with the Coqblin-
Schrieffer model in real metals. The orbital degrees of
freedom are tunable by an external magnetic field, and
this implies a peculiar AB effect, since the magnetic field
affects the spectrum and the tunneling amplitudes. The
conductance is calculated in the weak coupling regime at
T > TK in three- and two-terminal geometries [Figs. 1(a)
and 1(b)]. In the former case it is enhanced due to change
of the dynamical symmetry caused by field-induced level
crossing (Fig. 2). In the latter case the conductance can be
completely suppressed due to destructive AB interference
in source-drain cotunneling amplitude (Fig. 3). These re-
sults promise an interesting physics at the strong coupling
regime as well as in cases of doubly and triply occupied
TTQD. It would also be interesting to generalize the
present theory for a quadratic QD [24], which possesses
04660
rich energy spectrum with multiple accidental degenera-
cies. Analysis of the TTQD system without a magnetic
field was recently reported in a conference.
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