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Exact Characterization of O�n� Tricriticality in Two Dimensions
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We propose exact expressions for the conformal anomaly and for three critical exponents of the
tricritical O�n� loop model as a function of n in the range �2 � n � 3=2. These findings are based on an
analogy with known relations between Potts and O�n� models and on an exact solution of a ‘‘tri-
tricritical’’ Potts model described in the literature. We verify the exact expressions for the tricritical O�n�
model by means of a finite-size scaling analysis based on numerical transfer-matrix calculations.
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While exact results exist for a rich collection of univer-
sality classes of two-dimensional phase transitions, includ-
ing q-state Potts criticality and tricriticality, and O�n�
criticality, such results are still absent for the tricritical
O�n� model, except for isolated points at n � 0 and 1.
The purpose of the present work is to fill in this gap and to
provide exact formulas for the conformal anomaly and the
main scaling dimensions of the tricritical O�n� model as a
function of n. These results are not rigorous in the mathe-
matical sense, but they may still be assumed to be exactly
true, as we shall argue below.

The O�n� model is defined in terms of n-component
spins on a lattice, with an isotropic pair coupling of the
form Eij � �� ~Si � ~Sj�, where i and j denote two neighbor-
ing lattice sites and � is a function. This model can be
represented by a graph expansion [1], in which n assumes
the role of a continuous parameter. For this purpose, it is
especially useful to choose the model on the honeycomb
lattice, and the function � as ��p� � � log�1� xp�, where
x is a measure of the inverse temperature. Then the graph
expansion reduces to a gas of nonintersecting and non-
overlapping loops on the honeycomb lattice [2]. This loop
gas representation enables further mappings on the
Kagomé 6-vertex model and the Coulomb gas, and has
therefore played a crucial role as a step in the derivation of
exact results for the honeycomb O�n� model [3,4].

Just as for the Potts model, tricriticality can be induced
by introducing a sufficient number of vacancies. This was
already known [5,6] for the case n � 0 which describes the
collapse of a polymer at the so-called theta point, induced
by attractive interactions between the polymer segments,
and for the Ising case n � 1 [7,8] where the existing results
for the tricritical q � 2 Potts model apply [9]. For theO�n�
loop model, the existence of tricritical points was further
confirmed by transfer-matrix analyses for a range of values
of n [10,11]. Whereas this work yielded reasonably accu-
rate values for some universal parameters, no exact for-
mulas were found for these parameters as a function of n.
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Recently, Janke and Schakel [12] reconsidered the tri-
critical O�n� model and postulated that the conformal
classification in terms of the Kac formula [13,14] of the
magnetic exponent, which is known to be Xh � Xm=2;m=2

[as given below in Eq. (8)] for n � 0 and 1, generalizes to
other n.

In order to find the ‘‘missing link,’’ which is the relation
between n and the conformal anomaly c, a clue is provided
by the observation that a critical O�n� model corresponds
with a tricritical q � n2-state Potts model [3]. It would
thus be interesting to bring the tricritical Potts model into
an even higher critical state. This appears to be possible
[15,16] by the simultaneous introduction of vacancies and
their dual counterparts, four-spin couplings, into the Potts
model. The equivalent loop model on the surrounding
lattice then appears to have a parameter subspace where
the Yang-Baxter equations are solvable [15]. Out of four
branches of solutions parametrized by q, one was identified
as a branch of tri-tricritical Potts transitions [15,16]. The
conformal anomaly and exponents of this model are found
as a function of q by using an alternative representation as
a Temperley-Lieb model [15].

Since the equivalent loop model has loop weight
���
q
p

, it
seems an appealing possibility that the universal properties
of the q-state tri-tricritical Potts model match those of the
tricritical O�n �

���
q
p
� loop model. The conformal anomaly

derived in Ref. [15] is, expressed in n �
���
q
p

, determined
by the following equations:

c� 1�
6

m�m� 1�
; 2cos

�
m� 1

��; ��
1

�
� n:

(1)

Furthermore, Ref. [15] yielded scaling dimensions of
which we quote three as

Xj � �k2
j � 1�=	2m�m� 1�
; (2)

where we introduced an index j � 1, 2, or 3, and kj is given
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TABLE I. Tricritical points as determined from the transfer-
matrix calculations described in the text. The estimated numeri-
cal uncertainty in the last decimal place is shown in parentheses.

n v w

�2:0 0.3503(1) 0.8156(1)
�1:75 0.3649(1) 0.8330(1)
�1:50 0.380 081 4(1) 0.852 082(1)
�1:25 0.397 935 2(1) 0.872 640 4(1)
�1:00 0.416 356 8(3) 0.894 926 8(1)
�0:75 0.436 008 8(1) 0.918 961 7(2)
�0:50 0.456 683 4(2) 0.944 610 0(2)
�0:25 0.478 147 5(2) 0.971 742 8(2)

0 1=2 1
0.25 0.521 805(1) 1.028 950(1)
0.50 0.543 13(1) 1.058 12(1)
0.75 0.563 61(2) 1.087 08(2)
1.00 0.5830(1) 1.1155(1)
1.25 0.6010(1) 1.1429(1)
1.50 0.6175(1) 1.1688(1)
1.75 0.6321(1) 1.1928(1)
2.00 0.6452(1) 1.2145(1)
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by �j � 2 cos	kj�=�m� 1�
, with �1 � 1=�, �2 �

�1=�, and �3 � ��.
In order to verify the relation with the tri-tricritical Potts

model, we employ transfer-matrix calculations for the loop
model on the honeycomb lattice with vacancies. These are
introduced as face variables located on the elementary
hexagons. They have two possible states: vacant (weight
v) or occupied (weight 1� v). Furthermore, there is an
n-component vector spin ~Si on each vertex i that is sur-
rounded by three occupied hexagons. The one-spin weight
distribution is isotropic and normalized such that

R
d ~S � 1

and
R
d ~S ~S � ~S � n. The partition function given by [3] thus

generalizes to

Z �
X
L

vNv�1� v�N�Nv
Z Y

ijL

d ~Si
Y
hiji

�1� w ~Si � ~Sj�; (3)

where the sum is on all configuration variables: L is a
subset of the dual lattice and represents the occupied faces
of the honeycomb lattice. The product over ijL includes all
vertices except those of the vacant hexagons, Nv is the
number of vacant faces, N is the total number of faces, w
controls the strength of the spin-spin coupling, and hiji
denotes all nearest-neighbor spin pairs. The mapping on a
loop model proceeds along the same lines as in Ref. [2] and
leads to the following partition sum:

Z �
X
L

X
GjL

vNv�1� v�N�NvwNwnNl ; (4)

where the first sum is on all possible configurations L of
occupied faces, and the second one over all configurations
G of closed loops on the honeycomb lattice that avoid the
empty faces; w is the bond weight, Nw is the number of
bonds (or, equivalently, vertices) on G, and Nl the number
of loops.

The transfer matrix is constructed for a model wrapped
on a cylinder, whose axis is parallel to one of the lattice
edge directions. The unit of length is defined as the small
diameter of an elementary hexagon. The transfer matrix
keeps track of the change of the number of loops, vacan-
cies, and visited vertices when a new layer of sites is added
to the cylinder. Its largest eigenvalue determines finite-size
data for the free energy density, from which the conformal
anomaly can be estimated [17]. Three more eigenvalues �i
were calculated. These determine three correlation lengths
and allow finite-size estimates Xi�v;w; L� of the corre-
sponding scaling dimensions Xi [18]. The temperature
dimension Xt was estimated from the second eigenvalue
of the transfer matrix, and the magnetic dimension Xh from
a modified transfer matrix with a single loop segment
running in the length direction of the cylinder. The ‘‘inter-
face’’ exponent Xm was estimated by inserting a column
with bond weights of the opposite sign. Further details
about the transfer-matrix technique are given in
Refs. [10,11,19].
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We parametrize the vicinity of the tricritical fixed point
by two relevant temperaturelike fields t1 and t2 and by an
irrelevant field u. The associated exponents are yt1 , yt2 , and
yu, respectively, with yt1 > yt2 .

The tricritical point is estimated by simultaneously solv-
ing the unknowns v and w in the two equations

Xi�v;w; L� � Xi�v;w; L� 1� � Xi�v;w; L� 2�; (5)

where the functions Xi (i � h; t; m) are provided by the
transfer-matrix algorithm. Expansion of the finite-size-
scaling function in the vicinity of the tricritical point yields
that the solution v�L� of Eq. (5) converges to the tricritical
value v�tri� of v as

v�L� � v�tri� � aLyu�yt2 � � � � ; (6)

where a is an unknown constant; w�v; L� similarly con-
verges to the tricritical value w�tri�. The values Xi�L� taken
at the solutions of Eq. (5) converge to the tricritical scaling
dimension Xi as

Xi�L� � Xi � buL
yu � � � � ; (7)

where b is another unknown constant. We applied this
procedure for both Xi � Xh and Xi � Xm to locate the
tricritical points and to estimate the tricritical exponents
from Eq. (7). These calculations were performed along the
same lines as in Ref. [11], but here we use larger finite sizes
up to L � 14, and moreover, we include several values for
�2 � n < 0. The results for the tricritical points are listed
in Table I, together with the estimated error margins.

The analyses using Xh and Xm generated consistent
results and allowed us to check the numerical uncertainties.
4-2



PRL 96, 045704 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
3 FEBRUARY 2006
We also obtained finite-size estimates of Xt at the tri-
critical points thus calculated, and extrapolated these data.
The results for the conformal anomaly and the three ex-
ponents are listed in Table II, together with the estimated
error margins.

A comparison of the numerical results for the conformal
anomaly with Eq. (1), as given in Table II, strongly sup-
ports the classification of the tricritical O�n� model as
proposed for n � 3=2. Our numerical results for Xt agree
with X2 in Eq. (2); those for Xm agree with X1. Using the
value of the conformal anomaly and m as a function n, we
confirm that the numerical results for the magnetic scaling
dimension agree with the entry (i � m=2, j � m=2) in the
Kac formula:
TABLE II. Conformal anomaly and tricritical exponents as
determined from the transfer-matrix calculations described in
the text. Estimated error margins in the last decimal place are
given in parentheses. The numerical results are indicated by
‘‘(num).’’ For comparison, we include theoretical values ob-
tained from Eqs. (1), (2), and (8). For n <�3=2, the temperature
exponent Xt becomes complex.

n c (num) c (exact) Xm (num) Xm (exact)

�2:0 �0:9914�2� �0:991 559 9 �0:202�1� �0:201 799 0
�1:75 �0:9108�2� �0:910 998 6 �0:1765�2� �0:176 972 3
�1:50 �0:8196�2� �0:819 736 5 �0:151 66�3� �0:151 644 7
�1:25 �0:7164�1� �0:716 455 6 �0:125 96�3� �0:125 930 1
�1:00 �0:6000�1� �6=10 �0:100 01�2� �1=10
�0:75 �0:469 62�1� �0:469 619 5 �0:074 10�1� �0:074 095 5
�0:50 �0:325 28�1� �0:325 282 9 �0:048 53�1� �0:048 531 9
�0:25 �0:167 99�1� �0:167 995 3 �0:023 691�1� �0:023 691 7

0 0 0 0 0
0.25 0.175 26(1) 0.175 263 0 0.022 111(1) 0.022 111 0
0.50 0.353 48(1) 0.353 479 2 0.042 24(1) 0.042 235 7
0.75 0.529 94(1) 0.529 948 9 0.059 99(1) 0.060 000 4
1.00 0.700 00(1) 7/10 0.0749(1) 3=40
1.25 0.860(1) 0.858 976 9 0.0867 (2) 0.086 505 2
1.50 1.001 (2) 1 0.094 (5) 0.088 019 2
1.75 1.04 (4) 0.098 (5)
2.00 1.05 (2) 0.10 (1)

n Xt (num) Xt (exact) Xh (num) Xh (exact)
�2:0 � � � � � � �0:094�1� �0:095 162 7
�1:75 � � � � � � �0:087�1� �0:087 643 1
�1:50 0.709(1) 0.709 784 7 �0:0792�1� �0:079 090 9
�1:25 0.4817(2) 0.481 473 9 �0:0694�1� �0:069 365 3
�1:00 0.4000(2) 2=5 �0:0584�1� �7=120
�0:75 0.3445(2) 0.344 668 1 �0:045 93�3� �0:045 889 5
�0:50 0.303 90(2) 0.303 930 9 �0:031 99�1� �0:031 982 8
�0:25 0.273 220(1) 0.273 219 9 �0:016 645�1� �0:016 643 5

0.00 1=4 1=4 0 0
0.25 0.232 500(1) 0.232 495 7 0.017 731(1) 0.017 729 52
0.50 0.2193(1) 0.219 238 6 0.036 28(1) 0.036 276 58
0.75 0.2090(2) 0.208 874 1 0.055 39(1) 0.055 397 46
1.00 0.2000(1) 1=5 0.075 00(2) 3=40
1.25 0.193(1) 0.190 680 0 0.0950(2) 0.095 497 14
1.50 0.180(5) 0.168 449 9 0.12(1) 1=8
1.75 0.183(10) 0.13(1)
2.00 0.184(10) 0.15(2)
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Xi;j �
	i�m� 1� � jm
2 � 1

2m�m� 1�
: (8)

The n > 0 results correspond with branch 1 as defined in
Ref. [15], and those for n < 0 with branch 2. The numerical
results and theoretical values of the conformal anomaly
and the dimensions are shown as a function of n in Figs. 1
and 2.

The expressions for X1 and X2 in Eq. (2) are not repro-
duced by entries in the Kac table, at least not with index
pairs that are linear in m. This made it difficult to con-
jecture the exact values of Xm and Xt from numerical data
alone, even if supported by data for c. This problem did not
apply to Xh, which appears in the Kac table.

Remarkably, the Potts tri-tricritical branch ends at q �
9=4. For q > 9=4 the model is no longer critical and the
transition probably turns first order [15,16]. The equiva-
lence q � n2 thus yields the result that the tricritical O�n�
branch ends at n � 3=2, possibly with a discontinuous
transition for n > 3=2. At first sight, the numerical results
for 3=2< n � 2 may not seem suggestive of a discontinu-
ous transition, and allow only a very weak discontinuity.
But it is clear from Tables I and II that the estimated errors
tend to increase with n for n * 3=2, as a result of deteri-
orating finite-size convergence. This is consistent with the
possibility that an operator becomes marginal at n � 3=2,
in line with c � 1 (see Table II). Therefore, one may
expect similar phenomena as for the q > 4 Potts model,
where the marginal operator leads to misleadingly slow
finite-size convergence which obscures the weak first-order
character in a range of q near 4.

The results presented above apply to the nonintersecting
loop model. Loop intersections are irrelevant in the critical
O�n� model, but they are relevant in the low-temperature
phase [20]. While the possible relevance of such intersec-
tions could modify the universal behavior, this appears not
to be the case for the n � 1 tricritical O�n� loop model,
since its exponents agree with those of the corresponding
spin model.
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FIG. 1. Conformal anomaly (+) and temperature exponent (�)
of the tricritical O�n� model vs n. The data points show the
numerical data, the curves the theoretical predictions.
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FIG. 2. Scaling dimensions Xh (�) and Xm (+) of the tricritical
O�n� model vs n. The data points show the numerical data, the
curves the theoretical predictions.
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The scenario sketched above indicates that the critical
and tricritical O�n� branches are not connected, and does
not identify the loop gases corresponding to the tricritical
O�n� model and the critical Potts model, such as was
recently suggested [12].
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