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Jahn-Teller Solitons, Structural Phase Transitions, and Phase Separation
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It is demonstrated that under common conditions a molecular solid subject to Jahn-Teller interactions
supports stable Q-ball-like nontopological solitons. Such solitons represent a localized lump of excess
electric charge in periodic motion accompanied by a time-dependent shape distortion of a set of adjacent
molecules. The motion of the distortion can correspond to a true rotation or to a pseudorotation about the
symmetric shape configuration. These solitons are stable for Jahn-Teller coupling strengths below a
critical value; however, as the Jahn-Teller coupling approaches this critical value, the size of the soliton
diverges signaling an incipient structural phase transition. The soliton phase mimics features commonly
attributed to phase separation in complex solids.
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The inventory of electronic and optical materials with
technological applications is continually expanding. One
theme that is emerging in these complex materials is the
importance of the interplay between the electronic and
lattice degrees of freedom in shaping the properties of
the materials [1]. While some kinds of electron-lattice
interactions (deformation potential coupling, piezoelectric
coupling, etc.) have been well studied for decades, impor-
tant qualitative differences can emerge in situations where
there are electronic or vibrational degeneracies, a frequent
occurrence in crystals with high spatial symmetry. Jahn-
Teller interactions involving the interaction between de-
generate (or nearly degenerate) electronic and vibrational
states are now thought to play a substantial role in many of
the recently discovered materials systems, including high-
temperature superconductors [2], alkali-doped fullerides
[3], and the manganites [4].

Here, a Jahn-Teller model is presented that supports
nontopological solitons stabilized by a coupling of electron
and lattice degrees of freedom. The analogues of such
states have been conjectured to have relevance to cosmo-
logical phase transitions in the early Universe [5], and they
have been cited as potential candidates for dark matter [6].
Thus the materials discussed here are experimentally ac-
cessible systems where these states may be studied. The
soliton phase in this model provides an intrinsic mecha-
nism for the kind of heterogeneous charge clumping [7]
and ‘‘phase separation’’ found with increasing frequency in
complex materials [1].

The model.—Consider a molecular crystal describing
three electronic bands linearly coupled to a doubly degen-
erate distortion. The electronic bands are constructed from
an orbital doublet, transforming as x and y and a trivial
orbital singlet; the doublet of distortions transforms as x
and y, and it is treated as a doublet of classical fields. The
following continuum model Hamiltonian is taken:

H � He �Hph �HJT; (1)
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whereW is the energy splitting between the orbital doublet
and the singlet, and m labels the states in the axial angular
momentum basis. Atomic units (@ � me � 1) are used
throughout.

This is a continuum version of the pseudo-Jahn-Teller
model with local symmetry �A � E� � �, and it is similar to
a recently studied continuum model that was shown to
contain new kinds of multiorbital polarons (‘‘vector polar-
ons’’) [8] that feature spatial variations of the vibronic
mixing. It is demonstrated here using a variational argu-
ment that the model of Eq. (1) admits nontopological Q-
ball-like solitons [9,10] for a range of the model’s
parameters.

With a doubly degenerate vibrational spectrum, the
model contains the following continuous symmetry:

�m ! exp�im���m; (3a)

 m ! exp��im�� m; (3b)

where m � 0;�1. This global symmetry corresponds to
conservation of axial angular momentum of the combined
electron-lattice system. The Noether charge associated
with this global transformation is found to be given by

Q �
X
m

Z
d3xm� ym m � i�m@t��m�: (4)

Variational ansatz.—Consider a trial form for the dis-
tortion fields with harmonic time dependence

��1� ~r; t� � �� ~r� exp��i!t� (5)
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FIG. 1. Electron charge density profile for a Jahn-Teller soli-
ton. Local distortions create an attractive potential well that
enhances the electron charge density. Friedel oscillations in the
charge density set in beyond the distorted region r > r0.
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corresponding to a spatially varying amplitude and a region
with a local molecular distortion that rotates about the
symmetric configuration. Additionally the amplitude of
the distortion �� ~r� is taken to be a spherical pulse in space,
consistent with the Q-ball field amplitude in the thin wall
approximation [9]. The amplitude and radius of the pulse
are treated as variational parameters to be determined by
minimizing the energy of the configuration subject to the
constraint of fixed Noether charge.

In the frame corotating with the distortion, the
Hamiltonian acquires an additional term responsible for
rotation-electronic coupling, a term well known in the
effect of � doubling [11]:

Hr � �!
X
m

Z
d3xm ym m: (6)

This additional term respects the symmetry transforma-
tions of Eq. (3), and the Noether chargeQ is also conserved
in the corotating frame.

The Bogoliubov–de Gennes equations for the
Hamiltonian system He �HJT �Hr are
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In the case where W 	 ! and � (the chemical poten-
tial), the system of equations reduces to
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Electrons in the m � 0 channel move in an effective
square well potential that is attractive. The strength of the
potential varies inversely with W and is proportional to the
square of the distortion. A Fermi gas experiencing this
short-range attractive potential will form an electron-rich
region in the vicinity of the potential with Friedel oscil-
lations in the density that decay away with distance (see
Fig. 1).

Within the Thomas-Fermi approximation for the kinetic
energy, an analytic expression for the total kinetic energy
of the electrons in the corotating frame can be found. For
large W (W 	 g�0; �;!), it is sufficient to include only
the kinetic energy of electrons in the m � 0 channel, and
only termsO��!=W�2� need be retained. Dependence on!
can be eliminated in favor of the Noether charge Q, using
the relation obtained from Eqs. (4) and (8):
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where n0 is the electron density away from the distorted
region and V is the volume of the spherically symmetric
distorted region.

Thus,
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for the case where �	 g�0, where �0 is the amplitude of
the distortion [12].

Jahn-Teller solitons.—The energy in Eq. (10) is mini-
mized with respect to the two variational parameters to
give V2 � �=�2

0U��0� and �0 � ��3=2�4 where the ef-
fective potential U��0� �
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3
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0 and � � 3Q2W3=16g2n0. Thus, a stable nontopolog-

ical soliton is found for systems with negative cubic an-
harmonicity, a condition commonly invoked in models of
the thermal expansion in solids. The amplitude of displace-
ment �0 is determined only by elastic constants. This is in
contrast to other Jahn-Teller-induced displacive models
[13,14] where the amplitude of the displacement depends
also on the strength of the electron-lattice coupling g.

Furthermore, it is noted that U��0� vanishes at a critical
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(see Fig. 2). Thus

the volume occupied by the soliton V diverges when g �
gc. As a consequence, it is seen from Eq. (9) that ! also
vanishes at gc for finite charge, and the energy of the
distorted state at gc becomes equal to the energy of the
symmetric (undistorted) state. Hence the system undergoes
a structural phase transition for g � gc. It should be noted
that for values of g close to gc, quantum fluctuations in the
distortion become important and will alter the nature of
this phase transition [15].

While only the volume and not the shape of the soliton
alters the energy of this variational solution, the additional
energy associated with a finite-sized wall, connecting the
distorted region of the interior to the symmetric region
exterior to the soliton, contributes a surface tension [9].
In the absence of vibrational or electronic anisotropy, the
soliton is a sphere, the shape with minimum surface area.
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FIG. 2. (a) Variational energy of Jahn-Teller soliton E versus
coupling constant g. The soliton energy behaves as

�����������������
g2
c � g

2
p

=g,
thus vanishing as g! gc. The vanishing soliton energy signals
the onset of a structural phase transition. (b) Sketch of U��� for
several values of g. At gc, U vanishes at the local minimum at
�0 � j�3j=2�4.
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This model can be generalized in several ways. The
effects of electron-electron interactions might be included
by the addition of a Hubbard-U term in Eq. (2a). Within
mean-field theory, the effects of the electron repulsion
work counter to the lattice-induced attractive potential of
Eq. (8); however, for a range ofU below a critical valueUc,
the soliton will continue to be a stable solution of the
model.

Another generalization results from enlarging the sym-
metry group by coupling to larger multiplets. Consider
vibronically coupling a singlet band to a degenerate triplet
of bands with a triplet of degenerate distortions, a contin-
uum pseudo-Jahn-Teller model with local symmetry �A �
T� � 	. The triplets support the vector representation of
SO�3�. Thus the vibronic interaction is invariant under the
following continuous transformations:
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X
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m0m�R��m0 ; (11a)
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D�1�

m0m�R
�1� m0 ; (11b)

where D�1�
m0m�R� is the j � 1 Wigner D matrix associated

with the rotation R.
For vibronic coupling below a critical value, the SO�3�

symmetry is unbroken and a stable Jahn-Teller soliton
results for a region of the parameter space. The key ingre-
dients in generalizing these results to other pseudo-Jahn-
Teller models are adapted from Coleman [9]: (1) the ex-
istence of an unbroken continuous symmetry, and (2) a
04570
global minimum in U���=�2 for nonvanishing �. For mod-
els with classical distortions, Jahn-Teller interactions
(rather than pseudo) will not work even though many are
invariant under continuous symmetries [16]. For such sys-
tems, the symmetry is broken for arbitrarily small coupling
constant, thus violating the first criterion.

In summary, a continuum Jahn-Teller model was intro-
duced that supports nontopological (Q-ball-like) solitons
that self-localize through local electron-lattice interaction.
Such solitons are stable and are of finite size for coupling
strength below a critical value. The size of the soliton
diverges as the coupling strength approaches this critical
value, signaling a structural phase transition in the system.
It is anticipated that such states should be observable in two
ways: (1) by measuring time-dependent fluctuations in
atomic positions in molecular crystals that are close to a
structural phase transition, and (2) by directly imaging the
electron charge density. A soliton phase in a molecular
crystal would exhibit charge inhomogeneity and concom-
itant localized distortions, thus serving as a new kind of
nanoscale structure relevant to a variety of complex
materials.
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