
PRL 96, 045702 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
3 FEBRUARY 2006
Effect of Stress on Melting and Freezing in Nanopores
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A thermodynamic treatment of the freezing of fluids confined to nanosized closed pores is presented.
The model includes the effects of pressure in the liquid, the volume change on solidification, and the strain
energy in both the solidifying material and the wall material. When applied to the system of Pb droplets in
Al, the model predicts an elevation of the melting point, in agreement with experiment.
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The freezing of liquids in porous media plays an impor-
tant role in many diverse scientific and engineering pro-
cesses, including frost heaving of soils [1] and the
performance degradation of polymer electrolyte membrane
hydrogen fuel cells [2]. Because of its importance in many
fields of study, an extensive body of literature exists on the
topic of phase transition behavior of fluids in confined
geometries [3,4]. The majority of melting or freezing ex-
periments conducted on liquids contained in the open
porous structure of Vycor glasses have demonstrated that
the melting temperature is suppressed below that of the
bulk equilibrium value. The melting point depression can
be readily explained by capillarity effects from the pore
walls. In the rare cases where the opposite trend is ob-
served, the melting point increase can be attributed to the
strength of the wall-liquid interaction; that is, the solid
phase, rather than the liquid, wets the interior pore surface.
In addition to the change in melting temperature, two other
important solidification effects are observed: a lowering of
the apparent latent heat of fusion and a large hysteresis of
the freezing transition.

The experiments on Vycor glasses stand in stark contrast
to the behavior of fluids confined to closed pores. Liquid
droplets with no free surfaces are formed, for example,
from ion implantation of insoluble species into metal or
glass materials. Although the hysteresis and latent heat
anomalies are similar, typically the (upper) melting point
of fluids in completely entrapped pores is elevated above
the bulk value. Gråbæk and Bohr (GB) [5,6] studied the
melting behavior of nanoscale pores of Xe, K, and Pb
formed by ion implantation in an Al single crystal. The
inert gases showed a large superheating of several hundred
degrees, whereas Pb exhibited a melting point elevation of
roughly 20–60 K. Similarly, a very large superheating was
found for Ar implanted in Al [7] and Dybkjær et al. [8]
observed superheating of 23 K for 4 nm indium droplets
embedded in Al. Tagliente et al. [9] found a melting point
increase of 7–13 K for 15–20 nm sized particles of In
implanted in fused silica and, in an experiment that did not
involve ion implantation, Dages, Gleiter, and Perepezko
[10] observed a 25 K superheating of Au coated Ag clus-
ters. In addition, molecular dynamics simulations [11] of
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Pb droplets in Al have also confirmed that superheating is
possible in nanosized pores.

To date, a satisfactory explanation for the melting point
elevation has not been formulated. Although a preferential
wetting of the pore wall by the solid is a possible mecha-
nism, it is unlikely this condition exists for all the experi-
mental systems studied. A key difference between the
Vycor glass experiments and the experiments performed
on entrapped pores is, in the latter case, large stresses will
be generated upon melting due to the volume change
associated with the melting/solidification transition. Al-
though previous studies have addressed the question of
elastic stresses [6,12,13], most have neglected, implicitly
or explicitly, the volume change on solidification and/or
the stress change of the matrix material. Instead, a lowering
of the mean square displacement of liquid atoms at the
interfaces has been proposed to explain the melting point
anomaly [7,14]. The purpose of the present Letter is to use
the thermodynamics of stressed solids [15,16], including
the effects of the transformation strain and surface stress
boundary conditions, to determine the equilibrium melting
point of liquids confined to nanosized pores. It should be
stressed that the treatment presented here addresses only
thermodynamics and cannot distinguish whether a system
exists in the superheated state due to kinetic limitations.
Nevertheless, when the theory is applied to the Pb in Al
system, the results indicate that elastic stress effects can
lead to a melting point elevation.

Consider a spherical pore of radius Ro containing a
liquid phase (l) and a spherical solid particle (s) of radius
R embedded in a wall material (w). The geometry is
depicted schematically in Fig. 1. By placing the solid
sphere at the center of the pore, we are addressing specifi-
cally cases where the liquid wets w; that is, a premelted
liquid film will form and nucleation of s will not occur at
the wall. The goal of the analysis is to derive the Helmholtz
free energy change as a function of R where the reference
state is characterized by a pore entirely filled with liquid at
a pressure Po. It is also convenient to define an overpres-
sure written as �P � Po � 2fwl=Ro, where fwl is the
interface stress between the wall and liquid phases. (In
the model described below, all interface stress and inter-
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FIG. 1. Spherical geometry of the pore freezing problem.
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facial free energy terms are assumed to be isotropic.) For
any nonzero overpressure, there will be a free energy
contribution in the reference state due to an elastic strain
energy in the w material. The free energy change on
forming a solid of radius R consists of three parts; the first
is given by:

Fs � �4=3�R3L
To � T
To

� 4�R2�sl

� 4�R2
o��e�d=� � 4�

Z R

o
r2E�r�dr: (1)

Here L denotes the latent heat of fusion, � represents the
interfacial free energy, and To is the melting temperature
evaluated at the reference pressure Po. To can be obtained
from the equilibrium (1 atm pressure) melting temperature
via the Clausius-Clapeyron equation. The third term in the
above expression describes the premelting effect [1]; that
is, for temperatures below the melting point, an equilib-
rium thin layer of liquid may exist at an interface. In the
premelting term �� � �ws � �wl � �sl, d � Ro � R is
the distance between interfaces and � is an interaction
distance on the order of atomic dimensions. The final
term in Eq. (1) is the total elastic strain energy of the s
phase. In what follows, we shall assume that both the s and
w materials are elastically isotropic such that the strain
energy can be written as:

E �
1� �

2E
�ij�ij �

�
2E
��kk�2; (2)

where �ij are elements of the stress tensor (summation
convention implied), E is Young’s modulus, and � is
Poisson’s ratio. All elastic constants are assumed to be
independent of temperature.

The final two terms of the total free energy are as
follows. The free energy change of the l phase is given by:

Fl � �
Z
pdV � 4=3��R3

o � R
3��T

Z P

Po
�1� �Tp�pdp;

(3)

where �T is the isothermal compressibility of l and P is the
final pressure in the liquid. Finally, the free energy change
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of w is given by the relaxation of the strain energy or:

Fw � 4�
Z 1
Ro
r2�Ew�r� � Eow�r��dr; (4)

with the superscript ‘‘o’’ representing the elastic strain
energy of the w material in the reference state.

To complete the analysis of freezing, the elastic problem
must be solved. First, we can define the eigenstrain, or
stress free transformation strain, as the strain the solid
would undergo were it not for the constraint of the sur-
rounding liquid and wall. In spherical coordinates, it is
given by:

�T � �Trr � �T�� � �T		 �
�V 0

3V 0
�

Po
3KB

; (5)

where �V 0=V 0 is the change in volume on solidification as
measured from a solid phase under a pressure of Po, and
the final term, with KB denoting the bulk modulus of the
solid, represents the strain necessary to impart a pressure
Po on the stress free solid. From the eigenstrain of Eq. (5),
the stresses are found from:

�ij � Cijkl��ij � �
T�ij�; (6)

where �ij is the Kronecker delta, and, for isotropic sys-
tems, the compliances are Cijkl � 
�ij�kl ����ik�jl �
�il�jk�, with 
 representing the Lamé constant and � the
shear modulus.

The strain fields in the s and w phases are found in the
usual way from the displacement fields u�r�, which in
spherical coordinates can be written in the general form
u�r� � Ar� B=r2. The constants A;B can be found from
the following set of boundary conditions. At r � 0, the
displacement in s is zero, and, similarly, the displacements
vanish in w for r! 1. In addition, at the wl and sl
interfaces, we have [17–19]

��rr � P� 2~fsl=R at r � R; (7)

��rr � P� 2~fwl=Ro at r � Ro: (8)

In the spirit of the phenomenological description of pre-
melting [see Eq. (1)], we will write the ~f terms as:

~f sl � fsl � �fws=2� fsl�e
�d=� (9)

with an analogous definition for ~fwl. The form of Eq. (9)
ensures that the proper interface stress is reproduced as
the separation distance (d) between the wl and sl inter-
faces becomes large, and the factor of 1=2 ensures that
the stress field in the s and w phases reduces to the
expressions derived by Johnson and Alexander [18] in
the limit R! Ro.

At this point, the elasticity problem is completely speci-
fied except for the remaining parameter P, the pressure in
the liquid layer. To obtain P, first note that the final volume
of the l phase is given by:

Vf�4=3�f�Ro�u�r�Ro��3��R�u�r�R��3g: (10)

Then the volume change can be related to the pressure
2-2
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FIG. 2. Lattice parameter vs temperature for nanopores of Pb
in Al from the study of Gråbæk and Bohr. The different symbols
correspond to different heating and cooling cycles as described
in Ref. [5]. The solid line is computed by the thermodynamic
model of Eqs. (1), (3), and (4), and good agreement with
experiment is found using an overpressure in the liquid of
0.35 GPa. Also shown for comparison is the lattice parameter
trend for �P � 0:45 and 0.25 GPa.
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change via �P � P� Po � �Vf � Vi�=��TV�, with Vi
being the volume of remaining liquid after solidification
but before elastic displacements.

Using the above pressure change relationship, Eq. (10)
and the displacement fields, one obtains an expression for
the final pressure:

P�
�
�TPo�R3

o�R3�

3
�
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�

�

�
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3
o�R
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3
�
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o

4�w
�
R3

3KB

�
�1
: (11)

Equation (11) completes the free energy description.
To test the model outlined above, we can apply it to the

case of nanoscale Pb droplets in Al, a system studied
extensively by GB. The latent heat of fusion, the volume
change on solidification, and the elastic constants of both
Pb and Al can be found in standard metallurgical tables
[20]. (The tabulated value of �V=V can be converted to the
volume expansion at the pressurePo via the bulk modulus.)
The remaining unknowns are the interfacial properties, and
here we will assume the interfacial free energy is equal to
the interfacial stress, i.e., f � �, for all interfaces. A value
of �sl � 0:033 J=m2 [5] is assumed for the solid-liquid
boundary, and �sw � 0:77 J=m2 is taken from the work of
Landa et al. [21]. Gråbæk and Bohr conclude the value of
�� is small and �� � 0:1 J=m2 is assumed. Finally, the
interaction length within the premelting law is chosen to be
� � 0:3 nm, and a pore size of Ro � 8:5 nm will be
investigated.

The remaining unknown in the thermodynamic model is
Po, the initial pressure when the pore contains only liquid.
In their study of Pb in Al, GB performed x-ray diffraction
experiments on the Pb droplets. From the lattice parameter
and the compressibilty of Pb, the authors concluded that
the pressure in the pores was quite low. It is important to
note, however, that the pressure determined from diffrac-
tion measurements represents the pressure in the final state.
Because of the volume change on solidification, the initial
pressure may be large even though the pressure with the
solid core present is low. Therefore, the following proce-
dure was used to estimate Po. An initial guess of Po
completely specifies the free energy, and F�R� can be
determined for any given temperature. From the minimum
of the free energy function (see below), the equilibrium
size and compressive stress of the s phase is found. From
the known compressibility and thermal expansion of Pb,
the stress is converted into the lattice parameter vs tem-
perature, and the results can be compared with those
generated by GB. By repeating the above procedure for
subsequent estimates of Po, the lattice parameter vs tem-
perature trend can be matched to experiment, and the
appropriate overpressure can be determined.

Figure 2 illustrates the results of the above procedure.
The lattice parameter vs temperature data is taken from
GB, where the different symbols represent various heating
and cooling cycles as explained in Ref. [5]. The solid line is
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the trend in lattice parameter computed from the hydro-
static stress on the s core given an overpressure in the
initial state of �P � 0:35 GPa, and, for comparison, the
two dotted lines depict the behavior assuming overpres-
sures of 0.25 and 0.45 GPa. As is clearly seen, the lattice
parameter variation predicted by the thermodynamic
model (solid curve) reproduces quite well the experimental
data, except in the high temperature regime where the data
tends to level off with increasing temperature. The agree-
ment shown in Fig. 2 suggests our estimate for the initial
pressure of �P � 0:35 GPa is reasonable.

Figure 3 shows the main results of this study. The solid
line is the free energy vs solid phase radius at the predicted
melting point (see below). The free energy is zero at R � 0
by construction, but there is an additional minimum at
larger R (	6:4 nm) representing the equilibrium size s
core radius. It should be noted that the equilibrium size
does not completely fill the pore (R< Ro), and, as pointed
out by Wallacher and Knorr [22], the incomplete freezing
leads to a reduced latent heat as observed in several experi-
ments. Also, the solid curve of Fig. 3 exhibits a maximum
at intermediate values of R, which explains the hysteresis
of the freezing transition. That is, an activation energy
barrier accompanies both solidification and melting.

The minimum in the free energy function of Fig. 3
occurs at F�R� � 0. Since there is no free energy change
between the complete liquid state and the solid plus pre-
melted liquid state, the temperature of 620.3 K represents
the equilibrium melting point of Pb in 8.5 nm pores in Al.
Therefore, the model predicts a melting point elevation of
20 K, in qualitative agreement with the range of melting
2-3



0 2 4 6 8
Radius (nm)

-5

0

5

10

15

F
re

e 
E

ne
rg

y 
(x

10
-1

8  J
) T = 620.3 K

Without Elastic Strain Energy

P = 0.45GPa

P = 0.35 GPa

P = 0.25 GPaδ

δ

δ

FIG. 3. The free energy vs the radius of the pore solid, R for Pb
in Al at the equilibrium melting temperature of 620.3 K. Also
shown is the free energy computed without the elastic stress and
pressure terms as well as the free energy for two additional
estimates for �P.
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points found by GB. The dashed line in Fig. 3 is computed
by assuming no contribution due to elastic stresses; i.e., the
last terms in Eq. (1) as well as Eqs. (3) and (4) were set
equal to zero. The dashed curve exhibits a minimum at
R � 0, the pure liquid state, indicating that without stress
effects the melting point is much lower. Comparison of the
two functions in Fig. 3 illustrates the importance of includ-
ing all stress effects when evaluating the melting behavior
in nanopores. Also shown in Fig. 3 is the free energy for
overpressures of �P � 0:25 and 0.45 GPa. These dotted
curves illustrate that the melting point increases with in-
creasing initial pressure.

In summary, a thermodynamic treatment of the melting
or freezing transition in nanopores has been developed.
The model includes the effects of premelting at the pore-
solid interface, elastic strain energy in both the pore solid
and the wall material, pressure change in the liquid, and the
volume change on solidification. With reasonable values
for the materials parameters in the Pb in Al system, the
model suggests that the inclusion of stress effects can
explain the elevation in melting point observed in
experiment.
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Note added in proof.—During the preparation of this
manuscript, the author became aware of a similar problem
studied by Slutsker et al. [23].
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