PRL 96, 045701 (2006)

PHYSICAL REVIEW LETTERS

week ending
3 FEBRUARY 2006

Formation of Polymorphic Cluster Phases for a Class of Models of Purely Repulsive Soft Spheres

Bianca M. Mladek,1 Dieter Gottwald,1 Gerhard Kahl,1 Martin Neumann,2 and Christos N. Likos>

'Center for Computational Materials Science and Institut fiir Theoretische Physik, Technische Universitit Wien,
Wiedner Hauptstrafle 8-10, A-1040 Wien, Austria
2Institut fiir Experimentalphysik, Universitdt Wien, Strudlhofgasse 4, A-1090 Wien, Austria
31nstitutfiir Theoretische Physik II, Heinrich-Heine-Universitdt Diisseldorf, Universitdtsstrafie 1, D-40225 Diisseldorf, Germany
(Received 7 November 2005; published 30 January 2006)

We present results from density functional theory and computer simulations that unambiguously predict
the occurrence of first-order freezing transitions for a large class of ultrasoft model systems into cluster
crystals. The clusters consist of fully overlapping particles and arise without the existence of attractive
forces. The number of particles participating in a cluster scales linearly with density, therefore the crystals
feature density-independent lattice constants. Clustering is accompanied by polymorphic bee-fee tran-
sitions, with fcc being the stable phase at high densities.
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The distinguishing feature of soft matter systems is the
vast separation of length and time scales characterizing the
extent and motion of their constituent entities. The solvent
is microscopic whereas the solute particles are mesoscopic
[1]. The ability to control the architecture and chemical
nature of these macromolecules, combined with the flexi-
bility in influencing the solvent properties and the compo-
sition of the system, gives rise to an unprecedented
freedom in tuning the effective interactions between the
particles and opens up the possibility of steering the macro-
scopic properties of the system [1,2]. The richness of
spontaneously forming complexes in soft matter encom-
passes length scales that exceed the dimensions of the
individual macromolecules. Indeed, the latter can self-
organize in a variety of ways, giving rise to so-called
hypermolecular structures [3] that encompass a large num-
ber of mesoscopically sized entities. Characteristic ex-
amples are the complex phases encountered in ternary
mixtures of oil, water, and amphiphilic surfactants or in
block copolymer blends, as well as the emergence of
cluster formation between colloidal particles, which has
attracted a great deal of attention recently [4—12]. The
underlying physical mechanism that drives the emergence
of hypermolecular structures is widely believed to rest on
the existence of competing interactions among the meso-
scopic solute constituents. For example, the dominant
mechanism that guarantees the stability of finite clusters
in colloidal [5,7,8] or biological [6] systems stems from the
presence of short-range attractions and long-range repul-
sions in their effective interaction potential. Whereas the
former provide the driving force for unlimited cluster
growth, the latter act as a barrier against it that brings
further particle aggregation to an end [3,7]. Cluster for-
mation is a highly topical issue due to the large variety of
cluster morphologies that form [5,9,11] and to the rele-
vance of these structures in influencing vitrification and
gelation [5,9,12].

In this Letter, we report on a different mechanism that
gives rise to a distinct type of cluster formation, and which
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does not rest on the explicit existence of competing inter-
actions. Contrary to the cases in Refs. [5—8], the constitu-
ent particles we consider are allowed to overlap and are
purely repulsive. Both conditions are readily fulfilled for
various types of polymeric macromolecules, e.g., polymer
chains [13], polyelectrolytes [14], or dendrimers [15].
Under certain, general conditions on the properties of the
Fourier transform ®(q) of the interparticle potential ®(r),
we demonstrate that the particles form aggregates that
further organize into regular cluster crystals with multiple
site occupancy. We explicitly confirm the theoretical re-
sults by performing extensive computer simulations on a
specific system that represents the entire class of effective
interactions [16].

Ultrasoft effective interactions [2,17] hide many sur-
prises in the topology of their phase diagrams and the types
of crystal phases that arise, even for purely isotropic pair
potentials ®(r) [18—20]. For the case in which ®(r) is non-
negative and bounded, a general criterion determining the
topology (but not the crystal structures) of the phase dia-
gram has been put forward [16]. If the Fourier transform
(i)(q) is non-negative (termed Q% class), then the system
displays reentrant melting with an upper freezing tempera-
ture. If, on the other hand, (i)(q) oscillates around zero
(termed Q7 class), then a transition into an ordered cluster
phase will take place at arbitrary temperatures. This corre-
sponds exactly to the ordered ‘“‘clump phase” described in
Ref. [21]. The argument put forward in Ref. [16] rests on
the fact that, except at small densities and temperatures, the
fluid state of the systems at hand is extremely well de-
scribed by the mean-field approximation (MFA) c(r) =
— B®D(r), where c(r) is the direct correlation function and
B = (kgT)~!, with Boltzmann’s constant kg and the abso-
lute temperature 7. Consequently, the fluid structure factor
S(q)is given by S(¢) = [1 + Bp®(¢)]~", where p denotes
the number density. Consider now the Q* class and let g.
be the wave vector for which ®(g) attains its minimum,
negative value. Then, S(g) develops a real pole at g, along
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the so-called A line [16,22,23], which signals an instability
of the uniform phase. Evidently, the A line has the shape
kT, = |®(g.)|p,; ie., it persists at all temperatures.
Since g, is set solely by the interaction, the crystal lattice
constant a o ¢; ' should be density independent, at least
on the freezing line. Thus, the number of particles in the
elementary cell should change accordingly, a requirement
that can be fulfilled by the formation of multiparticle
aggregates (clusters).

Although the reentrant melting scenario has been con-
firmed [20,24-26], the clustering scenario has received
considerably less attention up to now. In this work, we
explicitly demonstrate its validity. We perform a detailed
investigation of the generalized exponential model of index
n (GEM-n), ®(r) = g exp[—(r/o)"], with n = 4. It can be
shown that ®(r) belongs to the Q% class for n < 2 and to
the O* class for n > 2. For n = 2, the Gaussian core
model of Stillinger [27] is recovered. The GEM-4 is treated
here as a representative of the Q= class. Suitably tailored
dendrimers that have been assembled in a computer simu-
lation show evidence for a GEM-n-type of effective inter-
action with n > 2; hence this model reflects the behavior of
realistic systems [28].
|

We define p* = po® and T* = kgT/e. Our investiga-
tions consist of a combination of sophisticated minimiza-
tion algorithms, density functional theory (DFT), and
advanced Monte Carlo (MC) simulations. We start with
a calculation at 7 = 0, allowing for the formation of
clusters in which n, particles sit on top of each other,
and minimize the lattice sum with respect to the crys-
tal structure and n,. Since the periodic lattice that the
clusters form is a priori unknown, we take advantage of
an unbiased search strategy based on genetic algorithms
[29]. Only fcc and bce crystals were predicted, which
are used as candidates at finite temperatures. For this
purpose, we employ DFT with the highly accurate
MFA-excess free energy [23,25,30,31] Feulpl=
(1/2) [dry [dryp(r))p(ry))®(Ir; — 1y|). For the one
particle density, p(r), we made the Gaussian ansatz
p(r) = Y gripalr — R = nc(a/7)3/2Z{Ri}€_“<r_R")z,
where p(r) is the cluster density profile and the vec-
tors {R;} form a Bravais lattice [32]. The total free
energy is Flpl = Fiulpl + Felpl, with the ideal part
Filpl = kgT [drp(r)In(p(r)A’) — 1], A being the
thermal de Broglie wavelength. For ao? =20, Fyy
can be approximated analytically and the variational
free energy, F/N = f(n., a), takes the form:

f(n., a) = kgT[lnn, + 3In(y/ao?/m)] + n‘"’%r Z/ ﬁ:o dr%[e*‘)‘(’*R")z/2 — e AR /21 P(r)

[ (o
+(n,— 1) g—wﬁ drrre " 2®(r) + 3kzTIn(A/ o), (1

where the primed sum is carried over all lattice vectors
excluding R = 0, R; = |R,|. The function f(n,, «) is then
minimized at any state point with respect to n. and «. For a
given crystal (fcc or bec) and density p*, the cluster
population n, and the lattice vector lengths R; are coupled
to one another, R;/o = I;(n./p*)'/3, where I; are lattice-
specific numerical coefficients. At the minimum of
f(n,, a), which corresponds to a mechanically stable crys-
tal, the particular property n, o« p* is fulfilled, so that the
lattice constants of both the bec and the fcc lattices remain
fixed at all p* values. In particular, the nearest neighbor
distances for bce and fcc have the values d.. = 1.3680
and d. = 1.4140, respectively.

In order to check the thermodynamic stability of the
crystals as well, we calculated the free energy of the
uniform fluid employing the MFA, c(r) = —B®P(r), as a
closure to the Ornstein-Zernike relation and following the
energy route to thermodynamics. The resulting phase dia-
gram is shown in Fig. 1. At low densities, the system is
fluid. Upon compression, a first-order clustering transition
occurs, leading at sufficiently high densities to the fcc
structure. Above the triple temperature, 7; = 0.4, a
wedge-shaped cluster bce region intervenes between the
fluid and the cluster fcc. Thus, the system also shows
polymorphic transitions between cluster solids. The bcc-
fcc density gap is very narrow, contrary to the fluid-crystal

Lgap. In agreement with Ref. [16], the freezing and melting
curves are almost straight lines that preempt the A line.
To put the theoretical predictions in a stringent test, we
also carried out MC simulations in the NVT ensemble.
Typically we used systems with approximately 5000 par-
ticles and extended the computer experiments to 150 000
MC sweeps. Considerable speedup was achieved by im-
plementing a discretized simulation technique [33]. The
symmetry of the resulting regular structures was analyzed
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FIG. 1. The phase diagram of the GEM-4 model, as obtained
by DFT. The shaded area represents the coexistence region of the
liquid and the cluster bcc phase. The dash-dotted curve is the A
line of the system, calculated in the MFA.
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FIG. 2. Two simulation snapshots of a GEM-4 system for
T* = 0.4 and p* = 2.5 and 7 (left and right). The middle panel
shows a close-up of one cluster. Particle diameters are not drawn
to scale but are chosen to optimize the visibility of the structures.

as proposed in Ref. [34]. In the simulations, we found
evidence of spontaneous clustering and crystallization,
which is demonstrated by the snapshots in Fig. 2, both
for T* = 0.4. Whereas in the left panel (p* = 2.5) the
system is obviously in the fluid phase, formed by isolated
particles as well as clusters, at a higher density p* = 7.0, in
the right panel, the particles are tightly bound in clusters
that are located on a fcc lattice.

To determine the chemical potential  we used Widom’s
particle insertion [35] supplemented by the overlapping
distribution method [35], and the free energies F. and
F.. were obtained via the Gibbs-Duhem relation. A com-
pilation of DFT and MC results for the free energies of all
phases at 7% = 1 is shown in Fig. 3. It can be seen that the
DFT results are in excellent agreement with simulations, a
fact that amply confirms the accuracy of the former and of
the phase diagram in Fig. 1. In the inset of Fig. 3 we show a
close-up of the three-phase region, to demonstrate that the
cluster bec crystal is not preempted by a transition between
fluid and cluster fcc. Spontaneous polymorphic bec — fec
transitions were not observed within the simulation but
they can be forced in isotension ensemble simulations.

In addition, we have measured in the simulations in
the solid phases the mean occupancy of the clusters,
(N.), where N, is the number of particles in one specific
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FIG. 3. DFT and MC results for the modified free energy
density BFp*/N = BFp*/N + K,p* of the GEM-4 system
against p* at 7" = 1. A thermodynamically irrelevant term
K, p* has been added for clarity of presentation. The error bars
of the MC results are smaller than the symbol size. Inset: a close-
up on the region of stability of the cluster bcc lattice. Here, a
different linear term K,p™ has been added.

cluster, and compared it with n, obtained from DFT.
Representative results for 7 = 1 are shown in Fig. 4,
showing excellent agreement between the two. The linear
dependence of n. on p* is fully confirmed (Fig. 4, left
inset). There is only a tiny difference in the population of
the bee and fec clusters, leading to a ratio dy../dpe. =

1.034, very close to the value 25 / V3 = 1.029 obtained
when n,. is identical for both lattices. At fixed p*, n, is also
practically 7" independent. In the right inset of Fig. 4, we
show the probability distribution of N, as obtained by MC
simulations for p* = 6.5 (left curve) and 9 (right curve):
the variation AN, shrinks as the density increases.

The clusters become more compact with increasing
density, as witnessed by the increase of the a values. As
can be seen in Fig. 5, the DFT-Gaussian density profile is in
excellent agreement with the one measured in MC. It
appears that « also has a linear dependence on p*. This
property is intricately related to cluster formation and can
be understood as follows. Let us fix all particles but one on
their lattice sites and consider the site potential V(r) they
exert on this test particle, which oscillates around r = 0.
Taking only the m nearest neighbor sites into account, we
have V(r) = (n, — D®(r) + n. > ®(Ir — R,,[), where
the sum runs over all nearest neighbor clusters, located at
the vectors R, of length d. For small r, we can write
V(r) = V(0) + (1/2)mn, ®"(d)r?, since ®"(0) = 0 [36].
Thus, the density profile p(r) o exp[—Bmn ®"(d)r?/2]
results, hence a = Bmn,®"(d)/2. Since n, « p*, a x
p™ also follows. From these considerations, we also con-
clude that particles are able to hop between clusters. At
p* =75 and T* = 1, the energy barrier between sites is
just = 3.2kgT. The barrier height grows with p*, rendering
particle hopping less and less probable. Particle motions
within a cluster should be largely uncorrelated, as the flat
shape of ®(r) at r = 0 yields very weak intracluster forces.
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FIG. 4. Cluster size n, and localization parameter aco?, for the
GEM-4 system at 7" =1, plotted against the density p*.
Lines: DFT results, points: MC simulations. There are small
discontinuities at the density of the bcc-fce transition. The left
inset shows DFT results that corroborate the n. « p* relation.
The dashed part of the line is an extrapolation to low densities,
for which the crystal is unstable. The right inset shows the
probability distribution of cluster population N, from simula-
tions at p* = 6.5 (left curve) and p* = 9 (right curve).
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FIG. 5. Cluster density profile py(r) of the GEM-4 system at
T =0.1 and p* =9. Inset: Semilogarithmic plot of pg(r)
against 2, demonstrating the Gaussian shape of the former.

All salient properties of the GEM-4 model that drive
cluster formation are common to the entire Q* class, thus
the phenomena presented here should be general. The
spontaneous formation of clusters appears counterintuitive
at first sight as, indeed, it occurs at the complete absence of
competing interactions at the level of the pair potential.
The underlying reason is rather the emergence of compet-
ing trends in the free energy, as can be seen in Eq. (1). The
entropy loss due to particle aggregation and the ‘“‘self-
interaction’” within the cluster [the kg7 Inn, term and the
second to last term on the right hand side of Eq. (1),
respectively] disfavor the growth of n.. However, increas-
ing n,. also entails the gain in avoiding close contacts with
the nearest neighbors, due to the concomitant increase of
the lengths R; in the second term on the right hand side of
Eq. (1). At the same time, excessive growth of n, is also
unfavorable, because it drives the interneighbor interaction
term to zero, as the R;’s then lie outside the range of ®(r):
the entropic and self-interaction terms overtake as n, — o
and stop further aggregation. Interactions with the neigh-
bors are also indispensable for the mechanical stability of
the crystals, providing the required restoring forces for
particle oscillations around the lattice sites. The stability
of the clusters against both decomposition to n, = 1 and
unlimited growth towards n, — oo is therefore seen to arise
from a competition between intra-cluster interaction and
entropy, on the one hand, and inter-cluster interaction, on
the other. The necessary requirements for this scenario are
that ®(r) is bounded (to allow full overlaps) and that it falls
rapidly enough to zero for r — oo, so that Ci)(q) develops
oscillations that give rise to the A line.

We have presented a detailed analysis of the phase
behavior of a particular soft-interaction system representa-
tive of a broad class of effective interaction potentials that
are realistic for ultrasoft, polymeric colloids. A novel
mechanism for the development of cluster phases has
been demonstrated to be at work, which gives rise to
polymorphic crystals with unusual structural properties.
The system is accurately described by a mean-field density
functional, as confirmed by comparison with computer
simulations. Work along the lines of tailoring dendrimers

that show Q7 interactions is under way. Future directions
include the investigation of anomalous diffusion, gelation,
and vitrification of such systems.
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