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Local Waiting Time Fluctuations along a Randomly Pinned Crack Front
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The propagation of an interfacial crack along a heterogeneous weak plane of a transparent Plexiglas
block is followed using a high resolution fast camera. We show that the fracture front dynamics is
governed by local and irregular avalanches with very large size and velocity fluctuations. We characterize
the intermittent dynamics observed, i.e., the local pinnings and depinnings of the crack front by measuring
the local waiting time fluctuations along the crack front during its propagation. The deduced local front
line velocity distribution exhibits a power law behavior, P�v� / v�� with � � 2:55� 0:15, for velocities
v larger than the average front speed hvi. The burst size distribution is also a power law, P�S� / S�� with
� � 1:7� 0:1. Above a characteristic length scale of disorder Ld � 15 �m, the avalanche clusters
become anisotropic providing an estimate of the roughness exponent of the crack front line, H � 0:66.
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The physics community has recently paid a lot of atten-
tion to the study of damaging processes [1–3]. This interest
is motivated not only by the practical benefits to many
engineering domains, but also from a more fundamental
point of view, by the diverse challenging questions brought
forward, in particular, in statistical physics [4]. The role of
heterogeneities during crack propagation is of central im-
portance since they induce local pinnings of the crack front
and subsequently trigger a very complex history of the
fracture in the material. One of the consequences of this
phenomenology is the roughness of fracture surfaces left
by the crack. Indeed, cracks in heterogeneous media ex-
hibit a self-affine morphology, with long range correla-
tions. The associated roughness exponent was found to be
very robust for different materials, over a broad range of
length scales [5–11], and was further conjectured to be uni-
versal [7,8]. A recent work [2,12] suggests that the origin
of these self-affine long range correlations comes from the
elastic interactions within the damage zone and proposes a
link between the roughness exponent and the critical ex-
ponent � for the correlation length of the damage clusters.
More generally, front propagation in random media has
become a challenging problem related to the dynamics of
interfaces in many different physical systems theoretically
connected, such as crack fronts [11], magnetic domain
walls [13], or wetting contact lines [14–16], where elas-
ticity and disorder compete to shape the interface.

In order to shed some light on the interactions between
the crack front and material heterogeneities, a simplifica-
tion to a two dimensional configuration—an interfacial
crack—has been proposed both experimentally [17,18]
and theoretically [12,19]. The interfacial configuration
provides a higher resolution since all locations of the crack
front belong to the same plane. Moreover, using a trans-
parent material and a high resolution fast camera, the de-
tailed complex crack dynamics can be captured, following
the crack front with a high precision both in time and space
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[20]. So far experiments have been focused on the fracture
front line morphology leading to the estimated roughness
exponent � � 0:55� 0:03 [17], followed up by a longer
study showing ��0:63�0:03 [18]. First attempts have
been recently performed to analyze the interfacial crack
front dynamics [20,21]. These studies have shown that the
fracture front propagation is intermittent and can be de-
scribed in terms of a Family-Vicsek scaling [22] with a
roughness ��0:6 and a dynamic exponent ��1:2�0:2.

In this Letter, we study a system first studied experi-
mentally by Schmittbuhl and Måløy [17,20]. Whereas
previous studies focused on the morphology of the inter-
facial crack [17], we focus on the local crack dynamics,
and on the distribution in both time and space of the
waiting time during pinning events. To address this prob-
lem, we introduce a new analysis procedure in order to
study the local waiting time fluctuations. The improved
experimental techniques and resolution allow us to show
that the dynamics of the fracture front is driven by local
irregular avalanches with very large size and velocity
fluctuations, and anisotropic shapes whose scaling is di-
rectly linked to the self-affine scaling of the crack front
itself. This new set of experiments also confirms earlier
results on such systems [17,20].

We describe here experiments where two Plexiglas
plates are annealed together to create a single block with
a weak interface [17]. The plates are of dimensions:
32 cm� 14 cm� 1 cm and 34 cm� 12 cm� 0:4 cm,
and annealed together at 205 �C under several bars of
normal pressure. Before annealing, both plates are sand-
blasted on one side with 50 �m steel particles or 100 �m
glass beads. Sandblasting introduces a random topography
which induces local toughness fluctuations during the an-
nealing procedure. We have measured the profile of a
sandblasted Plexiglas surface, using a white light interfer-
ometry technique (performed at SINTEF-Oslo laboratory)
and found that the local irregularities have a characteristic
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size about 15 �m [23]. While the upper Plexiglas plate is
clamped to a stiff aluminum frame, a press applies a
normal displacement to the lower one (1 cm thick) at a
constant low speed which results in a stable crack propa-
gation in mode I [17]. The fracture front is observed with a
high resolution fast camera mounted on a microscope. Two
different cameras have been used, a Kodak Motion Korder
Analyzer CCD camera which records up to 500 frames per
second (fps) with a 512� 240 pixel resolution, and lately
a much more powerful one, a Photron Ultima CMOS
camera. Using this camera at a spatial resolution of 1024�
512 pixels, and an acquisition rate of 1000 fps we can
follow the stable crack front during more than 12 s (record-
ing up to 12 288 images). Different experiments have been
performed varying the acquisition hardware, the micro-
scope magnification corresponding to a pixel size between
1.7 to 10 �m, and the average front line speed ranging
from 0.35 to 40 �m=s. It is important to note that in all
cases, the pixel size is smaller than the size of the local
irregularities of about 20 �m due to the sandblasting
process.

In order to analyze the local waiting time fluctuations
and the burst dynamics, we propose the following proce-
dure: the fracture front lines extracted from image analysis
of the digital pictures [see Fig. 1(a)] are added to obtain a
waiting time matrix W�x; y�. This matrix has the dimen-
sion of the original image and an initial value equal to zero.
We add the value 1 to the matrix element w corresponding
to each pixel of the detected front line position �x; y�. This
procedure is performed for all frames of a given experi-
ment in order to obtain the final waiting time matrix
W�x; y�. A gray scale map of this matrix is shown in
FIG. 1 (color). (a) Typical example of a picture recorded by
the high speed camera (Photron Ultima) during an experiment
with an average crack front speed hvi � 28:1 �m s�1, and a
pixel size a � 3:5 �m. The solid line represents the interface
separating the uncracked (in black) and cracked parts extracted
after image analysis. (b) Gray scale map of the waiting time
matrix deduced from 10 000 front positions recorded at a rate of
1000 fps. The darker parts show the longer waiting times.
(c) Spatial distribution of clusters (in white) corresponding to
velocities 10 times larger than the average crack front speed.
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Fig. 1(b). The spatially random toughness along the weak
interface generates a rough crack line in pinning the crack
front [Fig. 1(a)], and triggers a rich burst activity on a wide
range of length scales. The numerous and various regions
of gray levels suggest this intermittent dynamics
[Fig. 1(b)]. It is important to mention that the image
recording is so fast that there are basically no holes in
the waiting time matrix W�x; y�, i.e., no regions of zero
values (apart from below the first front, above the last one,
and a few artifacts due to impurities in the sample). Then,
we can deduce from W�x; y�, a matrix V�x; y� of the local
normal speed of the interface at the time when the front
went through a particular position, by computing the in-
verse value of the corresponding matrix element w of
W�x; y� multiplied by the ratio of the pixel size a and the
typical time between two images �t. Therefore, we can
associate to each pixel corresponding to the crack line in
each image, a local front velocity v � 1

w
a
�t . Finally, we can

obtain the probability distribution functions of the local
waiting time w and the local front velocity v by estimating
the occurrence number of each measured waiting time or
velocity on all the pixels in all the fracture front line
images. The velocity distribution P�v=hvi� is shown in
Fig. 2 in a log-log scale. A data collapse is obtained for
all different experimental conditions by scaling the local
velocity v with the average crack front speed hvi which
varies from one experiment to another. A clear power law
behavior of the velocity distributionP�v=hvi� � �v=hvi���

is observed for velocities larger than hviwith a crossover to
a slowly increasing function for velocities smaller than hvi.
A linear fit to the experimental data for v=hvi> 1 gives a
slope�� � �2:55� 0:15. The inset of the figure shows a
double logarithmic plot of the corresponding waiting time
distribution P�w=hwi�, where w is the waiting time, and
hwi the average waiting time for each experiment. A linear
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FIG. 2 (color). The velocity distribution P�v=hvi� as a function
of the scaled velocity v=hvi for different experimental conditions
(various average crack front speeds hvi and pixel sizes a). A fit
(solid line) to all data for v > hvi has a slope�2:55. Inset shows
the corresponding waiting time distribution P�w=hwi� as a
function of the scaled waiting time w=hwi. The solid line
represents a fit to all the data for w< hwi with a slope 0.55.
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fit to the experimental data for w< hwi has a slope 0:55�
0:15, consistent with the exponent �� 2 deduced from the
velocity distribution. The power law distribution of the
local velocities confirms once again previous observations,
revealing a nontrivial underlying dynamics as observed on
a fast video recording. It is important to note that even
though the first moment of the velocity fluctuations hvi
exists, the second and higher moments are ill defined and
dominated by the largest velocity fluctuations. In an earlier
work, the velocity distribution was investigated with a
different method, based on the distance between subse-
quent fronts at a given time interval [20]. However, such a
method proved out to produce results depending on the
time interval chosen. Indeed, a short time between the front
only gave contribution from the high velocity part of the
distribution while a long time between the fronts gave a
peak around the average velocity only. By using the con-
cept of waiting time introduced in the present Letter, we
are able to measure both high and low velocities. In the
present case there exists a well defined length scale a at
which the velocity can be measured. Using different mag-
nification of the microscope, we have checked the robust-
ness of our procedure and shown the reproducibility of our
results for different pixel sizes.

In order to analyze the local burst activity, we consider a
thresholded matrix generated from the velocity matrix
V�x; y�, by setting the matrix elements v equal to one for
v > Chvi and zero elsewhere, where C is a constant of the
order of a few unities. Figure 1(c) shows the spatial distri-
bution of clusters of different sizes obtained from a thresh-
olded matrix with a threshold level C � 10. The white
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FIG. 3 (color). Burst size S distribution P�S=hSi�, normalized
by the average burst size hSi, for different experimental con-
ditions (the various symbols correspond to those on Fig. 2). The
bursts detected for each experiment correspond to clusters of
velocities 3 times larger than the average crack front speed. A fit
on all the data (dashed line) gives a slope equal to 1.71. Inset:
Normalized bursts size distribution P�S=hSi� averaged over all
the different experimental conditions, for a wide range of differ-
ent threshold levels C. A fit to all the data, cutting the largest
clusters at which a cutoff appears due to the lack of statistics
(solid line), gives a slope equal to 1.67.
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clusters correspond to velocities 10 times larger than the
average crack front speed hvi. Then, we can extract from
this thresholded velocity matrix the size distribution of the
high velocity bursts. The clusters connected to the first and
last front, and thus belonging to the upper and lower white
parts are excluded from the analysis.

On Fig. 3, the cluster size distribution P�S=hSi� is shown
for different experiments at a given threshold value C � 3.
First, we show a data collapse for all the different experi-
ments performed by rescaling the clusters size S with the
average burst size hSi. Moreover, we clearly observe that
the burst size distribution P�S=hSi� follows a power law
with an exponent � � 1:7 proving that the burst dynamics
occurs on all length scales. We have checked that this
critical behavior, and, in particular, the exponent � �
1:7� 0:1, is really robust: normalizing by the average
burst size hSi, we can rescale all the different distributions
corresponding to diverse experimental conditions and a
wide range of threshold level values 2<C< 20 (see inset
of Fig. 3).

We expect a connection between the spatial scaling of
the bursts, and the self-affine scaling of the front line itself
on large scales. To investigate this, we have for each cluster
S chosen the smallest rectangular bounding box enclosing
it. The size of the bounding box gives the length scale Ly of
the clusters along the growth direction and the length scale
Lx of the clusters along the average front line orientation.
Figure 4 shows the dependence of the average size hLyi on
the length scale hLxi in a double logarithmic plot, for a
wide range of threshold values 2<C< 20, averaged over
all the different experimental conditions (different pixels
sizes and average crack front speeds). We clearly see that
the avalanche clusters become anisotropic above a charac-
teristic length scale Ld � 15 �m. This typical size corre-
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FIG. 4 (color). Average length scale hLyi as function of the
length scale hLxi, for different threshold levels C, averaged over
all the different experiments performed. The solid line is a fit to
the data points for Lx > 15 �m and has a slope H � 0:66,
consistent with the roughness exponent of the fracture front
line. The dotted line represents the curve hLyi � hLxi and serves
as a guide for the eye.
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sponds to the correlation length for the disorder introduced
by the sandblasting technique [23]. Below Ld, the local
toughness is marked by the same individual asperity and as
a result the thresholded velocity bursts appear isotropic. A
fit to the data points for Lx > 15 �m gives a slope H �
0:66 consistent with previous independent estimates of the
roughness exponent � � 0:63� 0:03 for the fracture front
line. This result shows that the system exhibits self-affine
scaling with the same roughness exponent � for the local
burst as the fracture front line and brings a new confirma-
tion of the roughness exponent found in our experiment,
which is different and higher than most present theoretical
or numerical predictions [19,24–26].

As mentioned in the introduction, the scaling behavior
of elastic interfaces in random media is involved in various
physical systems. Actually, the discrepancy between the
theoretical and measured roughness exponent has also
been reported recently, for contact lines of helium-4 [14]
and water meniscus [15,16] propagating on rough sub-
strates. It confirmed that the Joanny–de Gennes model
[27], usually proposed to describe the contact lines dynam-
ics which leads to the same kind of equation of motion for
crack fronts [28], is not sufficient [16]. Interestingly the
roughness exponents found, respectively, equal to 0:56�
0:03 and 0:52� 0:04, are close to the fracture front line
roughness. Besides, for the helium-4 meniscus, power law
avalanche size distributions have been measured with ex-
ponents � from 0.99 to 1.3, depending on the contact angle,
which is different from the exponent � � 1:7 found in our
experiments. However, avalanches are defined by Prevost
et al. [14] based on subtraction between fronts, which is
different from the present technique, and this � exponent
could be sensitive to such a definition.

Recent simulations based on a quasistatic model and
interpreted as a stress weighted percolation problem [12],
give for the first time consistent results with the experi-
mental roughness and dynamic exponent [20,21]. The in-
sensitivity of the velocity distribution in our experiments
on the average velocity of the front gives support to the
quasistatic assumptions used in these simulations. How-
ever, the simulated process zone was not observed in our
experiments above the micrometer scale. It should be men-
tioned that dynamical effects have also been introduced in
a model [26] with a full elastodynamic description where
elastic waves may trigger instabilities and modify the
roughness of the crack front, leading to the value � � 0:5
[29].

No theory or simulations so far have investigated the
local velocity or the burst fluctuations. It will be of great
interest to perform these analyses on the numerical models
for a direct comparison with our experimental work. This
will hopefully clarify the importance of dynamical effects
in modeling the fracture front propagation.
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