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Beat-Wave Resonant Down Scattering of Diocotron and Kelvin Modes
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A theory is presented of beat-wave resonant down scattering of two-dimensional diocotron (or Kelvin)
modes, in which modes down scatter to lower azimuthal mode number. The phenomenon is a fluid
analogue to nonlinear Landau damping. The principal new result is a quantitative prediction of the
scattering rate. The predicted rates and scalings are close to those observed in experiments with
magnetized electron columns.
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One embodiment of self-organization is the phenome-
non of down scattering. This refers to the evolution of
spectral energy from high to low wave number, and can
appear as an initially complicated spectrum of fluctuations
evolving to a more coherent state. Down scattering has
been associated with such diverse phenomena as the ap-
pearance of coherent structures in fully developed turbu-
lence [1], generation of atmospheric zonal flows [2], and
formation of low numbered spiral density waves in astro-
physical disks [3]. Unfortunately down scattering involves
fairly difficult nonlinear wave coupling, and dynamical
understanding is still emerging.

An experiment described in Ref. [4] generated down
scattering in a magnetized pure electron plasma, a system
with dynamics closely analogous to a two-dimensional
fluid [5,6]. Initializing the plasma with a single m � 4
diocotron mode (analogous to a Kelvin mode on a fluid
vortex), it was observed that the mode deforms with time,
and then evolves into an m � 3 and then m � 2 and
m � 1. Down scattering was subsequently observed in
simulations of the same physical system, with a stretch-
split–partial-merger mechanism invoked to explain the
phenomena [7].

This Letter describes a theory of down scattering in
terms of beat-wave resonance, and shows that the predicted
scattering rates are close to those observed. The basic
mechanism acts as follows. The initial test wave �m;!�
interacts nonlinearly with a background wave �m0; !0� to
form a beat wave at �m�m0; !�!0�. When the back-
ground fluid has differential rotation, say angular velocity
��r�, then there is a particular radius rs where the beat
wave and the fluid rotate with the same velocity, ��rs� �
�!�!0�=�m�m0�. At rs the beat wave resonates with the
fluid, in a manner analogous to nonlinear Landau damping
in a kinetic plasma. The net effect of this resonance is an
energy transfer between the two primary waves m and m0.
This effect has been examined theoretically in several
systems [3,8,9], but apparently none of these have been
successfully compared quantitatively with experiment.

The model and equations are as follows. The pure elec-
tron plasma is permeated by a straight magnetic field B,
bounded by a cylindrical conducting wall, and confined at
06=96(4)=045003(4)$23.00 04500
the ends by an electrostatic potential. We use cylindrical
coordinates �r; �; z�, with z aligned with the magnetic field,
ẑ � B=B. The basic equations are

@
@t
n�r � �nv� � 0; (1)

r2� � 4�en; (2)

where v � �c=B�ẑ�r� is the E� B velocity, n�r; �� is
the electron density,��r; �� is the electrostatic potential, B
is the constant magnetic field. The plasma is surrounded by
a conducting wall at r � Rw, giving the boundary condi-
tion ��Rw; �� � const. These equations also coincide with
the Euler equation for a two-dimensional inviscid fluid
[5,6], so our theory applies equally well to the case of a
2D vortex surrounded by a circular free-slip boundary.

The scattering rate is calculated as follows. The fields
are divided into the azimuthally averaged components
(denoted with subscript 0) and the remainder, so that
n�r; �� � n0�r� � ~n�r; �� and so on. Taking the fluctuating
components of Eqs. (1) and (2) and Fourier transforming in
t and � gives

Lp ~np � �in
0
0 ~vrp � i

X
p0

~vp0 � r~np�p0 ; (3)

r2 ~�p � 4�e~np; (4)

where ~vrp � r̂ � ~vp, Lp � !�m��r�, n00 � dn0=dr, m
and ! are the Fourier conjugates of � and t, the index p
stands for the vector �m;!�, and the � component of r
applied to Fourier transformed quantities stands for i=r
times the sum of azimuthal mode indices of the terms
operated on. The index ! is actually continuous, but we
denote

R
d! informally as a sum for brevity.

Assuming the nonlinearity is small enough to be treated
perturbatively, Eqs. (3) and (4) can be addressed with a
weak turbulence expansion [10]. Thus expanding ~np �

~n�1�p � ~n�2�p � ~n�3�p � � � � in successive powers of ~�, these
obey the equations
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Lp ~n�1�p � �in00 ~vrp; Lp ~n�2�p � �i
X
p0

~vp0 � r~n�1�p�p0 ;

Lp ~n�3�p � �i
X
p0

~vp0 � r~n�2�p�p0 :

Eliminating the n��� in favor of ~� and ~v (directly related),
and substituting into Eq. (4) produces

��1�p ~�p�
X

p0�p00�p

��2�p0;p00
~�p0

~�p00

�
X

p0� �p0

X
� �p00�p

��3�p0; �p0; �p00
~�p0

~� �p0
~� �p00 � 0; (5)

where the operators ��n� are defined by

��1�p � Lpr
2 �

4�ecn00
B

m
r
;

��2�p0;p00
~�p0

~�p00 � 4�er �
�n00~vp0 ~vrp00

Lp � Lp0

�
;

��3�p0; �p0; �p00
~�p0

~� �p0
~� �p00 � �4�eir �

�
~vp0~v �p0

Lp � Lp0
� r

�n00 ~vr �p00

L �p00

��
:

To lowest order, Eq. (5) describes linear normal modes
(diocotron or Kelvin modes). Taking the lowest order
solution as ~�p ’ ~��1�p , the lowest order equation is

��1�p �r� ~��1�p �r� � 0, which is the well-known Rayleigh
stability equation in cylindrical geometry [11]. The bound-
ary condition is ~�p�a� � 0 for m � 0, which gives ��1� as
a spectrum of normal modes with real eigenfrequency !k

~� �1�p �r� �
X
n

�̂k;!�r� �
X
n

�̂k�r���!�!k�; (6)

where n is a radial mode index, and the subscript ��k is
short for ��m;n. Orthogonal eigenmodes are obtained from
the adjoint operator, ��1�yp , defined by exchanging r2 and
Lp in ��1�p . The eigenmodes of ��1�yp are given by �̂yk �
�̂k=Lk, where Lk � !k �m�. It can be readily shown
that �̂yk and �̂k are orthogonal in the sense thatR
a
0 rdrr�̂

y	
m;n � r�̂m;n0 / �n;n0 , where �n;n0 is the

Kronecker � function and �̂�m;�n � �̂	m;n. Other linear
properties are described in Refs. [11,12].

The evolution of wave amplitude is described by the
wave kinetic equation. This is obtained by applying the
annihilation operator Im

R
a
o rdr

R
d!e�i!t�̂y	k �r; t� to

Eq. (5). We assume the m � 0 component is stationary
on the time scale of the m> 0 amplitude evolution, which
allows the radial dependence of the eigenmodes to be
treated as fixed [13]. The ��2� term gives shielding and 3-
wave resonances [10,12]. The former can be shown to give
no contribution to beat-wave resonance. The latter occurs
only when there are 3-wave frequency matches, !k �

!k0 �!k�k0 ; we assume none, and drop ��2�. This gives
04500
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Z a

0
rdrRe
�̂y	k n̂k�

� Im
X

p0� �p0

X
� �p00�p

Z a

0
rdr

Z
d!e�i!tir�̂y	k

�
~vp0~v �p0

Lp � Lp0
� r

�n00 ~vr �p00

L �p00

�
� 0; (7)

where 4�en̂k � r
2�̂k. Using Eq. (6) for the lowest order

contribution to the various ~vp in the nonlinear term and
averaging over the assumed rapid oscillations produces a
delta function ��!k �!k0 �! �k0 �! �k00 �. Assuming the
only frequency matches are those from the reality con-
straint leaves contributions from �k00 � �k0 and �k00 � k.
After some manipulation this gives

1

2

@
@t

Z a

0
rdrRe
�̂y	k n̂k� � Im

X
k0

Z a

0
rdrv̂k0 � r�̂

y	
k v̂	k0

�

�
n00cm

00Lk

rBLk0Lk00
r�̂yk �r

�
n̂k

Lk0

��
� 0; (8)

where Lk00 � Lk � Lk0 andm00 � m�m0. The propagator
L�1

k00 has two parts: a principal value and a resonance. We
evaluate these via the Landau bypass rule [14]

1

!00 �m00��r�
’ P:V:�

�i
jm00�0�rs�j

��r� rs�; (9)

where P.V. stands for the principal value, rs is the radius
where !00 �m00��rs� � 0, and �0 � d�=dr. The P.V.
part of the integral and the resonances from L�1

k and L�1
k0

give small nonlinear corrections to linear terms, and do not
contribute to scattering. We neglect them here for brevity.

Applying Eq. (9) to Lk00 in Eq. (8), and keeping only the
resonance gives the wave kinetic equation in remarkably
simple form

1

2

@
@t

Z a

0
dr
mr2jn̂kj

2

n00
��

X
k0

�n00m
00

jm00�0j

��������v̂	k0 �r
�
�̂k

Lk

���������
2
��������r�rs

:

(10)

Equation (10) is the main result of this derivation. The left
side represents the evolution of wave action, and the right
side the nonlinear scattering interaction. Scattering con-
serves wave action, since the right side vanishes when
summed over all modes. The sign of the scattering rate is
determined by n00, negative here, and m00 � m�m0. This
results in action lost by higherm and absorbed by lowerm:
down scattering. Physically, the scattering involves v̂k0

convecting the contours of �̂k=Lk at rs. The function
�̂k=Lk can be interpreted as a generating function for
the Lagrangian displacement [15], which implies that there
may be a very simple Lagrangian derivation of Eq. (10).

The derivation neglects several effects. Trapping, in
which the density flattens in the region of the resonance
and reduces the effects of a resonance [16,17], is negligible
here. Estimates show that the fluid orbit rate in the beat
wave is about 2 orders of magnitude slower than the
3-2
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decorrelation rate of the beat wave due to differential
propagation of �̂k and �̂k0 . Experimentally, ten consecu-
tive cycles of parent mode growth and decay damping are
found to be needed to produce significant levels of density
transport and down scattering rate change. Shielding can
with effort be shown to give no contribution to the beat-
wave resonance. Three-wave resonances were not ob-
served in the experiments, since there were no three-way
frequency matches. Other density profiles may exist which
do have such matches [18]. A two-time scale expansion,
necessary to avoid secular terms in a full analysis [12],
involves much more effort than shown here but gives the
same result for the terms considered here. Evolution of the
m � 0 component can also give terms in the wave kinetic
equation, but we have neglected it under the experimen-
tally justified assumption that the wave amplitude evolves
on a much faster scale.

It is straightforward to apply the 2D theory to 3D ex-
perimental measurements. A schematic of the experimen-
tal apparatus used is shown in Fig. 1. A column of electrons
of temperature T ’ 2 eV is confined inside a series of
conducting rings of wall radius Rw � 2:88 cm and con-
finement length Lc � 36:0 cm, in a uniform axial mag-
netic field Bz � 454 Ga. The magnetic field provides
radial confinement, and negative confinement voltages of
Vc � �75 V applied to end gate rings provide axial con-
finement. The rapid axial bounce motion of individual
electrons effectively averages over the z variations, allow-
ing a 2D description of the system. The r; � flow of the
electrons is thus well described by the 2D drift Poisson
equations, Eqs. (1) and (2). The vorticity of the flow, � �
ẑ � r � v � �4�ecB �n � 0:399n, is proportional to the elec-
tron density, which is directly measured in the experiment.

In the measurements, an electron column is injected and
trapped, then shaped and azimuthally symmetrized using
wall sectors. A single diocotron mode with chosen azimu-
thal mode number m and kz � 0 is then grown to the
desired amplitude, while all other modes are damped
with negative feedback. All feedback is then turned off,
and the subsequent evolution of the various modes is
monitored with a spectrum analyzer. Parent mode initial
amplitude Am and the daughter mode growth rate �m�1 can
be obtained from a single evolution in this fashion. To
study the mode evolution or to calibrate the mode ampli-
tude with the measured signal amplitudes, the electron
column can be dumped axially, and images made of the
electron line charge number distribution N�r; �� which
strikes a phosphor screen biased to 5.5 kV.
FIG. 1. Schematic of the cylindrical electron plasma confine-
ment geometry.

04500
In order to compare the 3D experiment with the 2D
theory, we calculate an equivalent axisymmetric 2D den-
sity profile n0�r� from the measurement of N�r; ��. This is
divided into an azimuthally averaged component and the
remainder, so that N�r; �� � N0�r� � ~N�r; ��. The axisym-
metric 3D density n�r; z� and electric potential ��r; z� are
then determined by iteratively solving Poisson’s equation
with the constraint N0�r� �

R
dzn�r; z� and the assumption

that the electrons are well described by a local Boltzmann
distribution along each magnetic field line [19]. The
boundary conditions are set by the gate voltages Vc and
the confinement length Lc. From the potentials we calcu-
late the � drifts caused by the radial component of the
electric field given by v��r; z� �

c
B Er�r; z�.

We remove the z dependence of quantities by using a
density-weighted average. For example, the azimuthally
averaged 2D electron density n0�r� is given by n0�r� �

1
N0�r�

R
dzn�r; z�n�r; z�. This quantity and the 2D rotation

frequency ��r� are plotted in Fig. 2 for a typical column
with a low-amplitude m � 3 mode (also shown).

Finite-length effects exist, although they are relatively
small. For example, there are � drifts from the radial
components of the confining electric fields at the ends
[20]. The density-weighted confinement frequency shift
from these is additive, and varies from 11.6 kHz on the
axis to 7.5 kHz on the edge of the column. The ends of the
column are also not exactly flat, but defining the radially
dependent plasma length as L�r� � N0�r�=n0�r�, the varia-
tion in length is less than 4% across the radius of the
column.

We use the column length to calculate the equivalent 2D
Fourier mode amplitudes through n̂k�r� � N̂k�r�=L�r�. In
general, we see good agreement between the observed
eigenfunctions n̂k and eigenfrequencies, and those pre-
dicted for an infinitely long cylinder with the same density
profile n0. We determine the solutions of ��1�p ~��1�p � 0
using a matrix shooting code [21]. In Fig. 2 we plot its
prediction for the m � 3 eigenfunction (dotted line).
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FIG. 2 (color online). Calculated density profile n0 and m � 3
eigenfunction (lines) and rotation frequency ��r�=2� (dashed
line) for the case of a low-amplitude m � 3 mode. A calculated
2D m � 3 mode eigenfunction (dotted line) is also plotted.
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FIG. 3. Measured (line) and predicted (symbols) m � 2
daughter mode growth rates.
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In order to evaluate the scattering rates, we rewrite
Eq. (10) in a form where potentials have been eliminated,
and assume the amplitude but not the shape of v̂k varies
in time. With a definition of wave action Jk �R
a
0 r

2drmjn̂kj
2=n00, the growth rate �k of a daughter

mode k in the presence of a parent mode k0 is

�k �
�1

Jk

X
k0

�n00m
00

jm00�0j

��������v̂	k0 � r
�
rn̂k

n00

���������
2
��������r�rs

: (11)

For the case of the measured n0 density profile and mode
eigenfunction shown in Figs. 2, Fig. 3 shows predicted
m � 2 daughter mode growth rates �2 as a function of
the m � 3 parent mode amplitude A3 (solid line).
Mode amplitude is defined by Ak �

RRw
0 2jn̂k�r�jrdr=RRw

0 n0�r�rdr, where the factor of 2 arises from our
Fourier transform convention 2n̂k � �nk. The growth rates
are scaled by the central rotation time 	r � 2�=��0�. The
�2 rates are extremely sensitive to the position of rs and to
the shape of n0 and the eigenfunctions. We estimate that,
given our ability to control the initial condition only to
within 1% in density, a spread in predicted down scatter
rates of a factor of 2 is indicated. We indicate this estimated
range for rates with dashed lines. The symbols are experi-
mental measurements of �2, with error bars indicating
measurement uncertainty. Consistent with the theory pre-
diction here of a sensitive dependence on initial conditions,
we find that identically prepared electron columns exhibit
growth rates with a fairly large scatter.

We have made several such comparisons between the
predictions of Eq. (10) and both new experimental mea-
surements and those presented in Ref. [4]. The set of
measured scattering rates spans 4 orders of magnitude. In
general, we find good agreement with the predicted A2

k
scaling of mode amplitude, and quantitative agreement
with the predicted scattering rates at the 50% level or
better. Other predictions of the 2D theory, such as the
location of resonance points and sensitivity to initial con-
ditions, also match the experimental observations well.
This is the first successful quantitative theory for this
04500
down scattering phenomena, and the agreement lends cre-
dence to a similar theory for astrophysical disks [3].

In future work, it would be useful to connect our very
specific beat-wave down scattering with some more gen-
eral theory, such as entropy minimization often associated
with self-organization. The awkward derivation of Eq. (10)
could be greatly simplified with a Lagrangian approach in
the style of Ref. [15]. Numerical simulation could extend
the understanding gained here to regimes where the theory
breaks down. Of the neglected effects, probably large
amplitude and trapping effects are the most important.
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