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Dynamics of Anderson Localization in Open 3D Media
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We develop a self-consistent theoretical approach to the dynamics of Anderson localization in open
three-dimensional (3D) disordered media. The approach allows us to study time-dependent transmission
and reflection, and the distribution of decay rates of quasimodes of 3D disordered slabs near the Anderson

mobility edge.
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Because of scattering from heterogeneities, the trans-
mission of a short wave pulse through a disordered medium
is strongly delayed. The precise shape of the decay of the
average transmission coefficient 7'(f) has been extensively
studied during recent years [1-6], parallel to related stud-
ies of current relaxation in disordered conductors [7—-11]
and survival probability decay in classically chaotic open
dynamical systems [12]. If the disorder is weak, wave
propagation is diffusive and T(r) decays exponentially
with time ¢ [1,2]. This simple result only holds, however,
until the Heisenberg time 7; = 1/A, where A is the typical
intermode spacing. Beyond # the decay of T(7) is believed
to be slower than exponential due to the so-called ‘““pre-
localized” states (or modes) that have anomalously long
lifetimes [7—11]. For strong disorder, Anderson localiza-
tion sets in [13—15] and the exponential decay is expected
to disappear, at least for quasi-one-dimensional (quasi-1D)
samples where 7, becomes smaller than the arrival time of
the pulse. Much less is known about the effect of Anderson
localization on T(¢) in three-dimensional (3D) samples,
where the Ioffe-Regel criterion of localization k€ <1 is
satisfied or, at least, approached as in recent experiments
by Johnson et al. [6] (k is the wave number; € is the mean
free path due to disorder). None of the existing analytic
approaches to Anderson localization [random matrix the-
ory [16], nonlinear o model [8,9,17], optimal fluctuation
method [10], self-consistent diagrammatic theory [18]]
have succeeded so far to model the dynamics of
Anderson localization in open 3D media.

In the present Letter we apply an improved version of
the original self-consistent theory of localization by
Vollhardt and Wolfle [18] to calculate the transmission
and reflection coefficients, as well as the distribution of
mode decay rates of open 3D disordered media in the
localized regime. The basic idea in this theory is to renor-
malize the diffusion coefficient to account for constructive
interferences between reciprocal wave paths inside the
sample. The self-consistent theory of Anderson localiza-
tion has been recently applied to study dynamics of weak
localization in quasi-1D waveguides and 3D slabs [5], and
dynamics of localized waves in unbounded 1D and 2D
media [19]. The key distinctive feature of our approach,
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as opposed to these works, is to allow for position depen-
dence of the renormalized diffusion coefficient, which is of
particular importance near open sample boundaries, where
constructive interferences are strongly suppressed due to
leaks. Our work may guide experimental quests for
Anderson localization of light [6,14] and be of help in
studies of “‘random lasers” [20].

In this Letter we consider a 3D disordered slab confined
between the planes z = 0 and z = L >> €. Our theoretical
model reduces to the diffusion equation for the intensity
Green’s function C:

[-iQ =V -Dr QOV]ICr,r, Q) =56 —-r) (1)

with a position- and frequency-dependent diffusivity
D(r, Q) [18,21]:
1 1 127
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where Dy = v{/3 and v is the energy transport velocity.
These equations have to be solved with the boundary
conditions C ¥ zo[D(z, 1)/Dplo.C =0atz =0and z =
L. We adopt z, = 2/3€. A larger 7, ~ € allows us to
account for internal reflections at the surfaces of the slab,
but does not affect our conclusions qualitatively. To regu-
larize the unphysical divergence of C(r, r/, Q) for r — r/,
we work with its Fourier transform C (q1,z 7, Q) inthe xy
plane and then introduce an upper momentum cutoff g, =
/€ to obtain C(r, r, 1) in Eq. (2). The numerical constant
= 1/3 is chosen such that the localization transition in
the infinite medium occurs at k€ = 1.
Following Refs. [3,4], we introduce the leakage function

Pr(a) = ilgg[@(z, —ia + €0,0(0,7 7, —ia + €

— D(z, —ia — €)9,C(0,z, 7, —ia — €)] 3)

with z =L and 7/ = {. The Laplace transform of the
leakage function yields the time-dependent transmission
coefficient T(z). Deep in the diffuse regime (kf — oo) the
leakage function is a sum of delta peaks located at & =
n?/tp, with t, = (L + 2z9)*/m*Dy the typical time
needed to cross the disordered sample by diffusion. For
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long times ¢ >t only the first peak is relevant and the
transmission coefficient 7T'(z) decays exponentially with
t/tp.

Let us first see what happens when k¢ is large but finite.
We solve Eqs. (1) and (2) numerically by extending the
approach of Ref. [21] to {) # 0 and find that the first peak
of Pr(a) shifts to smaller values of a while acquiring a
finite width (see the inset of Fig. 1). To characterize the
deviation of the transmission coefficient from the pure
exponential decay, it has proven convenient [3,4] to think
of T(¢) as if it were still resulting from a diffusion process
though with a time-dependent diffusion coefficient D(¢) =
—[(L + 2z0)?/m*](d/dt) InT(t). As can be seen from
Fig. 1, D(?) is smaller than Dy and depends on time, though
its time dependence is rather weak. This is also confirmed
by the analytic calculation that we performed assuming
t> tpand k€ > 1:

D) 1 3¢ L
1 3¢ t 225
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We see that the time-independent deviation of D(¢)/Dyg
from unity is roughly 1/(k€)? [in agreement with Ref. [5],
where the dependence of D on r was ignored], whereas the
time-dependent deviation is another factor €/L smaller.
This implies that in 3D samples nonexponential transmis-
sion is much more difficult to observe experimentally than
in quasi-1D waveguides, where a linear decay of D(r) with
¢/t has been predicted and observed in the diffuse regime
tp < ty [3,4]. The fact that D(¢) is virtually independent of
time in 3D is consistent with purely exponential 7(r)
observed in the experiments of Ref. [6] despite the rather
small value of k€ = 4.
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FIG. 1. Time-dependent diffusion coefficient for a disordered
slab of thickness L = 100¢ in the regime of weak disorder (the
product of wave number k and mean free path € exceeds unity).
Dashed lines show the result of the perturbational calculation
(4). Inset: the first peak of the leakage function Py (a). We find
Pr(a) ~ 8(a — 1/tp) and D(t)/Dg = 1 in the limit kf — oo,

We next turn to the regime of Anderson localization
(k€ < 1) which is the primary subject of this Letter. For
the parameters used in Fig. 2 we find the peak of T(z) at
t = tp. A detailed study of the arrival time of the pulse will
be a subject of our future work, but we note that this time is
determined by relatively short diffusion paths, correspond-
ing to large-{) solutions of Egs. (1) and (2), which are only
weakly affected by localization effects. The decay of T(r)
following the peak is power law: T(r) ~ t~(%%) with s =
0.85, in sharp contrast to the exponential decay in the
diffuse regime. The power-law decay of the transmission
coefficient originates from the power-law growth of the
leakage function Py(a) ~ a® shown in the upper inset of
Fig. 2. The latter is observed only for a > a* =
(Dg/ &%) exp(—L/ &) (see the lower inset of Fig. 2), where
& =6€(k€)*/[1 — (k€)*] < L is the localization length.
The leakage function Py(«) vanishes for a < a*. An
accurate analysis yields Pr(a) ~ (o — a™)? (with p =
0.5) for ala*, which corresponds to T(r)~
exp(—a*t)/t"*! for very long times ¢ > 1/a*. The time-
dependent diffusion coefficient

D@ _ [(s+ Dip/t,
Dy {OZ*ZD +(p+ Dip/t,

p<<t<l1/a*
t>1/a* )
decays as 1/1, testifying that the transmission coefficient is
not purely exponential. The time window 7p < t < 1/a*
of power-law decay of T(z) opens up progressively as &
decreases below L. The localization transition at k¢ = 1 is
smooth, in contrast to the infinite medium where k€ = 1
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FIG. 2. Time-dependent transmission coefficient 7(¢) of a 3D
disordered slab of thickness L in the localized regime. For each
value of k€, curves corresponding to L/& = 10, 12, and 14 are
shown (¢ is the localization length). For clarity, the curves
corresponding to k€ = 0.7 and 0.6 are shifted upwards by 3
and 6 units, respectively. The =% slope (with s = 0.85,
dashed line) obeyed by all curves crosses over to exponential
decay for times ¢ > 1/a. Lower inset: leakage threshold a* vs
slab thickness L at k¢ = 0.6 (+), 0.7 (circles), and 0.8 (triangles).
The dashed line is a* = (Dg/&%) exp(—L/&). Upper inset:
leakage functions Pr(a) behave as o (dashed line), except for
very small @ < a* where they vanish rigorously.
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defines a sharp boundary between diffuse and localized
regimes of wave propagation.

Let us now consider localization effects in time-
dependent reflection, first focusing on a disordered half-
space (L — o). For diffuse waves (k€ > 1), the average
reflection coefficient R(f) of the half-space scales as 1/13/2.
Such a scaling of R(#) corresponds to the leakage function
Pg(a) ~ Ja, where the leakage function in reflection
Pr(a) is defined by Eq. (3) with z = 0 and with a change
of sign. The square root scaling of Pz(«) is also present in
the localized regime, but only for o > @y ~ Dg/ &2, yield-
ing R(r) ~ 1/£3/% for short times ¢ << 1/ay. The waves
leaving the sample at such short times have not penetrated
deeply enough to be affected by localization effects and it
is therefore natural to recover the diffusion result. In con-
trast, Pg(a) scales linearly with « for @ < « (see Fig. 3),
leading to the scaling law R(¢) ~ 1/#> for long times ¢ >
1/aq. Interestingly, the value of «( can be calculated
analytically, although the result is quite lengthy (see the
inset of Fig. 3).

The inverse quadratic scaling of the reflection coeffi-
cient with time was reported first for 1D semi-infinite
disordered media [22]. The transition from R(z) ~ 1/£/2
to R(t) ~ 1/#* also occurs in quasi-1D disordered wave-
guides [4,23]. The 1/#? scaling of the reflection coefficient
seems therefore to be a hallmark of Anderson localization.
For a medium of finite thickness L >> ¢ this scaling of R(r)
should still be valid until a large time 1/a*, beyond which
an exponential decay sets in.

An alternative way of dealing with Anderson localiza-
tion is to study (quasi)modes of the disordered sample. The
statistical distribution P(I") of decay rates I' of the modes
has recently attracted considerable attention [24—28], also
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FIG. 3. Leakage function Pg(a) in reflection from a 3D dis-
ordered half-space in the localized regime. Dashed lines are
linear fits to the initial parts of the curves. Arrows show « up
to which the linear dependence of Pg(«) on « is expected. Inset:
a as a function of k€. Dashed lines show approximate analytic
results ag = (Dg/4&2)[1 — 6(k€)*] for k€10 and ay=
(8Dg/27£%)(1 — k£) for k€ 1 1.

in the context of random lasing [29]. In the localized
regime, the Laplace transform of P(I') approximately
equals the so-called survival probability P () [27]. The
latter, in turn, obeys dP,(t)/dt = —2T(t), where T(t) is the
Laplace transform of the leakage function P;(«) given by
Eq. (3) averaged over the source position z' inside the
disordered sample. This yields P(I') = 2P;(I')/T". The
distribution of leakage rates estimated in this way is (see
Fig. 4)

0, r<a*
P(I) =1 (§/L) X 1/T, a* <T<Dy/3&2
(1/3)\/Dp/LE X 1/T32, Dp/3&2<T < Dy/€?
(6)

The 1/I" behavior of P(I') is a hallmark of Anderson
localization and has already been reported previously for
both disordered and chaotic systems [24,28] [note that a
slightly different result P(') ~ 1/T""-?> has been reported
by Titov and Fyodorov [25]]. P(I') ~ 1/I3/2 is typical for
diffuse regime of wave propagation [26,28]. This part of
P(I') is due to quasimodes located closer than ¢ to the
boundaries of the sample, and which therefore behave
more as extended than as localized modes. I' > Dy /¢>
correspond to modes with lifetimes shorter than the mean
free time and cannot be correctly described by our theo-
retical model.

The mode picture of Anderson localization allows a
better understanding of 1/#> scaling of short-pulse reflec-
tion from a disordered half-space. A short pulse at z = 0,
t = 0 excites exponentially localized modes of disordered
sample with relative weights exp(—z/¢), where z is the
position of a given localized mode. Each mode then leaks
exponentially with rate I proportional to its intensity at the
surface of the medium [8,10]: I ~ exp(—z/£). Hence, the
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FIG. 4. Distribution of leakage rates P(I") for a slab of thick-
ness L in the localized regime (localization length £). For clarity,
only the results for k€ = 0.8 are presented. For other k€ < 1 the
curves are identical, except that the region of diffuse behavior
Dy/3&% <T < Dy/€* shrinks when k{¢ decreases and & ap-
proaches €.
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relative weight of a given mode is proportional to its
leakage rate I', which immediately yields Pg(a) ~ «a
and R(¢) ~ 1/2, if interferences of different modes are
ignored.

According to our theory Pgr(a) and P(I') all exhibit
gaps for 0 < a, I' < a®. This seems to contradict the
arguments of Refs. [8-10,28] that predict P(I') ~
exp[—In?(T'ty)] (with d = 2 or 3) in the limit of small T,
due to some special, rare realizations of disorder. However,
we consider a medium with infinite Heisenberg time and
therefore our results cannot be directly compared to those
of Refs. [8-10,28]. The unification of small-I" results
corresponding to ty — o0 and ty << o0 constitutes a major
challenge for future research.

In conclusion, we have presented a self-consistent theo-
retical approach to the dynamics of Anderson localization
in open 3D disordered media. We have calculated the time-
dependent transmission and reflection, as well as the dis-
tribution of mode decay rates of open disordered slabs in
the localized regime. The transmission exhibits power-law
decay in time, followed by an exponential decay at very
large times. The reflection crosses over from 1/73/2 to 1/72
behavior. The distribution of mode decay rates P(I") has
essentially two parts: P(I') ~ 1/T and P(T') ~ 1/T%/2, cor-
responding to modes localized deep inside the sample and
near the boundaries, respectively. These results are of
particular interest in the context of recent experiments on
Anderson localization of light [3,6,14].
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