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Correlations in Nuclear Masses
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It was recently suggested that the error with respect to experimental data in nuclear mass calculations is
due to the presence of chaotic motion. The theory was tested by analyzing the typical error size. A more
sensitive quantity, the correlations of the mass error between neighboring nuclei, is studied here. The
results provide further support to this physical interpretation.
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The precision of nuclear mass spectrometry has dramati-
cally improved in recent years. Thanks to the Penning trap
technique, mass measurements with relative precision as
high as 1078, or even 107'0 for stable nuclei, may be
achieved [1]. This unprecedented accuracy has important
consequences in different areas, like the determination of
fundamental constants, symmetry violations, metrology,
stellar evolution, and nucleosynthesis.

An additional motivation for such precise measurements
is to establish accurate and predictive mass formulas.
Global nuclear mass calculations have been pursued over
the years with increasing accuracy [2—4] [see Ref. [5] for a
review on recent experimental and theoretical develop-
ments]. Despite the numerous parameters contained in
the different models and the variety of the approaches
adopted, two peculiar features emerge from these calcula-
tions. On the one hand, different models yield similar
results for the known masses. A typical accuracy is 5 X
10~* for a medium-heavy nucleus whose total (binding)
energy is of the order of 1000 MeV. On the other hand, the
predictions of different mass models strongly diverge when
applied to unknown regions (they may differ by several
MeV, i.e., relative variations of order 5 X 1073).

These two features point towards the possibility of a
basic underlying physical mechanism not appropriately
incorporated into the present models. This mechanism
should explain, in particular, the observed differences be-
tween measured and calculated masses. In Ref. [6] it was
shown that the presence of chaotic layers in the nucleonic
motion, whatever its physical origin may be, leads to a
contribution to the nuclear mass whose typical size o, is
given by

2.8
Och = m MeV, (1)
where A is the mass number. Equation (1), obtained
through a mean-field theory, follows from very general
arguments, and is independent of any detailed information
concerning the system. It provides an order-of-magnitude
estimate of the chaotic contribution, and determines the

onset of a new regime. Figure 1 shows, as a function of A,
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the comparison between this prediction and the typical size
of the error of several nuclear mass formulas using the
most recent experimental compilation [7]. Three different
global mass models are compared. Two of them are based
on mean-field theory. The first one is a non-self-consistent
macroscopic-microscopic model [2], the second one is a
self-consistent calculation based on Hartree-Fock-BCS [3],
while the third one [4] is a shell-model based calculation
with parametrized monopole and multipole terms. The
agreement with Eq. (1) for the two mean-field models is
remarkable. The mass number dependence of the error is
also well described for the third model with, however, a
factor of order two between their amplitudes, a tendency
that one might expect for a model that includes substantial
residual interaction effects.

When the difference between calculated and measured
masses is plotted as a function of the neutron number (or of
any other relevant parameter), an oscillatory curve, whose
typical amplitude is shown in Fig. 1, is observed. This
curve does not look as a random white noise signal but
shows structures. This qualitative remark is consistent with
theoretical expectations. Indeed, it is known from semi-
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FIG. 1 (color online). Root mean square of the difference
between experimentally measured and calculated masses. Dots,
squares, and crosses from the calculations of Refs. [2—4],
respectively. The solid line shows the chaotic contribution,

Eq. (1).

© 2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.96.042502

PRL 96, 042502 (2006)

PHYSICAL REVIEW LETTERS

week ending
3 FEBRUARY 2006

classical mean-field theories [6,8] that the fluctuations of
the mass produced by chaotic layers are dominated by the
short classical orbits. The statistical properties of these
orbits show system-dependent features. As a consequence,
definite nonrandom fluctuations for the chaotic component
of the mass are expected. Some of the predictions, like the
asymmetry and non-Gaussian nature of the probability
distribution of the oscillations [8], have been tested re-
cently [9]. Thus, in the present context chaos should not
be assimilated to a random unpredictable process. Though
it may be a difficult task to explicitly compute its contri-
bution for each nucleus [10] because, generically, the de-
tailed oscillatory structure of this contribution is very
sensitive to details of the Hamiltonian, it does not set an
a priori bound to the accuracy of the theoretical mass
calculations [11]. This view differs from that expressed
in Ref. [12], where it is stated that the (partially) chaotic
nuclear motion imposes limits in principle on the accuracy
of the calculations of binding energies [cf Ref. [10]].
Moreover, and in contrast to global microscopic mass
models, seemingly random deviations of typical size
=100 keV are observed in algebraic mass relations de-
signed to locally cancel the interactions between nucle-
ons [13].

Our aim here is to further develop the analysis of the
mass errors in terms of chaotic motion by computing the
autocorrelation function at different neutron numbers.
Compared to the estimate of the typical error size, this is
a finer analysis of the fluctuations that tests more subtle
dynamical information. As discussed below, by assuming
the errors are due to the contribution of chaotic motion, it is
possible to obtain definite predictions which, in particular,
fix a typical scale of the correlations.

Fluctuations of the nuclear masses may be written, in a
semiclassical mean-field expansion, as [6]

U(x) = 2hzz Z =

The sum is over all the primitive periodic orbits p (and
their repetitions r) of a classical underlying effective
single-particle Hamiltonian. Each orbit is characterized
by its action §,, stability amplitude A, ,, period 7, =
aS » /0E, and Maslov index Vp X is a parameter on which
the effective potential depends. Though we let it for the
moment unspecified, it will be chosen below to be the
number of neutrons. The orbits entering this expression
are all evaluated at the Fermi energy Er. The latter is
related to the mass number through the condition
[ g‘” p(E, x)dE = A, where p is the average single-particle
density of states.

When the parameter x is varied, the correlation function
of the energy fluctuations U is defined as,

cos(rS /h+wv,,) (2)

C(x) = (U(xg = x/2)U(xg + x/2))s, 3)

where the brackets denote an average over a suitable
parameter window, which is large compared to the typical
scales of oscillation of U and small on a classical scale.
The correlation is evaluated using Eq. (2). When the pa-
rameter x varies, and for a large number of particles where
S, > h, the main contributions to the variations of U come
from the variations of the action. In a linear approximation,
valid when the variations are large compared to 7 but small
compared to S,, the action varies as S(x, * x/2) =

S(xp) = Q,x/2, where Q, = 9S,/dxl,,. Then, from (3)
and (2), dropping terms whose average is zero, we obtain

A A !yl rS,—rsS,

— pd . p p

= 2h <er27 B cos( 5 )
p.p' rr i
rQ, +r'Q,

X ep Ty ‘ 4
cos< o x>>xo “)

The double sum contains interfering terms between differ-
ent orbits. However, as shown in Ref. [8], it is not neces-
sary to consider them. The main contributing orbits are in
fact the shortest ones (i.e., those having the shortest pe-
riod). Their contribution is well approximated by taking
into account only the diagonal terms p = p/, r =1r,

i) o

Clx) = .

pr

By

In Eq. (6) we have used the semiclassical expression of the
spectral form factor, Eq. (8) below, to express the autocor-
relation in terms of an integral over time. The average
over the cosine function is computed over the whole set
of periodic orbits of period between 7 and 7 + dr7.
Denoting P.(Q) the distribution of the values of Q of all
these orbits, then

(cos(Qx/n)), = f i

cos(Qx/n)P(Q)dQ.  (7)

Equations (5) and (6) are valid for both regular and
chaotic motion. To proceed further, we must specify the
type of dynamics we are considering. As in [6], we identify
the error between experimental (Uey,,) and calculated mass
(U.ye) as originating from the chaotic contribution (U) of
the nuclear motion, Uey, = Ugye + U. When the motion is
chaotic, the number of periodic orbits having period be-
tween 7 and 7 + d7 grows exponentially with 7. There are
numerical as well as theoretical evidences indicating that
the distribution function P,(Q) is in this case Gaussian, of
average (Q), = n7and width (Q?), = a7 [14]. Nontrivial
dynamical information is contained in . When x repre-
sents variations of the neutron number, the parameter 7
takes into account the effect of the increase of the volume
of the nucleus as a neutron is added, implying an increase
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of the average action (or length) of the orbits. Finally, an
explicit expression for K, (7) is also needed. The semiclas-
sical expression for Kj(7) contains detailed information
about the discrete spectrum of periods 7, of the periodic
orbits,

Kp(7r) = hzzA%,,ﬁ(T - er). (8)

p.r

Here, we will not take into account this detailed informa-
tion, but instead use, as in [6], a continuous approximation

(8]

Kp(t) =0 7<7p
KD(T) =27 7= Tmin»

Knir) = | ©)
where 7,;, is the period of the shortest periodic orbit of the
system. This schematic approximation incorporates two
important features. On the one hand, it contains a
system-dependent information, namely, the truncation for
times smaller than 7;,. On the other hand, it displays the
universality observed in chaotic systems with time reversal
invariance for times 7.;, < 7 < hp, namely, the linear
growth characteristic of random matrix theory.

Using the Gaussian form of P.(Q) in Eq. (7) as well as
the approximation (9) of Kp(7), the correlation function
Eq. (6), normalized to one at the origin, takes the form

_ Ay (N
C({)_E]{Z/zy_:i COS<?>€ S (10)

where the dimensionless parameters { and a are given by

Norzaem rs
{Z%x and a=‘/%n. (11)

Following the lines developed in Ref. [14], a computation
of the average increase of the orbit’s action when the
volume V of the nucleus changes by oV gives n =
Er8V/V. Computing 8V when a neutron is added, and
using the expression 7,;,/a = (7o)~ 2 [8], where o, =
((00/0x)2)Y?, we obtain a = (v2/mA)Er/o . A reason-
able estimate for o, that has been tested numerically, is
~3/A'3 MeV. Then a ~ 37/(2wA%?3), which is of order
0.5 for A = 50 and 0.2 for A = 200. We have verified that,
for these values of a, the error introduced by setting a = 0
in Eq. (10) is less than 7 X 102 for any {. Setting a to
zero, the final result can be expressed as

B B §2 ey §4
c() = (1 Z)e &4 +EF(O, 2/4), (12)

where I'(s, z) = [ #*~'e~"'dr. Through the reparametriza-
tion (11), all the system specific features have been incor-
porated in ¢. This leads to a “universal” function, Eq. (12).
Why it is so, as well as the validity of this result, is
discussed below [15].

The parameter « contains detailed physical information
related to the single-particle spectrum [14]. However, it is

difficult to extract the relevant information from experi-
mental data. To circumvent this difficulty, the alternative
expression [8]

£ = [0, 0P/, (13)

where 9, U = 9U(x,)/dxo, is more convenient for our
purpose because it only involves properties of U. Though
the structure of Eq. (13) is reminiscent of the reparametri-
zation introduced in the context of random matrices and
universal parametric correlations [14,17], there are, how-
ever, important differences: in the latter case single-
particle energies are considered and universalities are ex-
hibited, whereas here parametric correlations of thermody-
namic properties of a Fermi gas are considered, and
important system specific features are shown to emerge
(see below).

From data, we have analyzed the following correlation
function

cyam) = Y& N)U(~Z2’ N+ (g
Uy

where U(Z, N) is the difference between calculated and
measured masses for a nucleus having Z protons and N
neutrons, and dN is the difference in neutron number along
an isotopic chain (a similar analysis for isotonic chains can
also be performed). For a specific dN and Z every available
f(N)=0(Z N)U(Z, N + dN) is calculated. To compute
the mean value with respect to N one has to sum all the
f(N)’s and divide by the total number of nuclei in the
isotope chain. This normalization ensures the non-
negativity of the Fourier transform of the correlation func-
tion. The average (U?)y is obtained by setting dN = 0. In
order to improve the statistics, that are severely limited by
the length of the isotopic chains, a further average is
computed over neighboring chains,

C(dN) = (Cz(dN)). (15)

Finally, to compare with Eq. (12), the correlation C(dN)
should be expressed in terms of the parameter {. For each
dN, (locally) the value of { is computed from Eq. (13),
where aXOO = U(Z N + 1) — U(Z, N), and averages over
N and Z are as before.

Figure 2 shows the normalized experimental correlation
function of the nuclear mass errors, Eq. (15), plotted as a
function of {, compared to the prediction (12). The three
different models studied give very similar results, in good
agreement with theory. The overall quality of the predic-
tion is comparable to Fig. 1. The independence of the result
with respect to the model used is a strong support for our
interpretation, though the influence of effects beyond
mean-field theory still need to be clarified.

Though Eq. (12) is a continuous function of { [in
particular, it behaves as C({) =1 — £%/2 close to the
origin], we have chosen to plot it at discrete values of £,
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FIG. 2 (color online). Correlation of the mass errors between
neighboring isotopes as a function of the dimensionless parame-
ter {. Circles, squares, and crosses correspond to the same
models as in Fig. 1. The solid line is the theoretical result
Eq. (12).

with a step similar to the experimental one. The half-width
of the correlation function C({) is of order 1.5, which
corresponds to neutron differences dN = 2, giving the
parameter range over which the chaotic contributions of
different isotopes are correlated. The existence of correla-
tions extending over a few nucleons seems to be consistent
with the high accuracy with which Garvey-Kelson-type
mass relations are fulfilled [13], as mentioned before.

The main approximation in Eq. (12) is the replacement
of the diagonal form factor, Eq. (8), by the function (9). By
this, the system specific spectrum of periodic orbits is
replaced by a function that keeps only one relevant scale,
the period 7, of the shortest one. It is this simplification
that, through the reparametrization (11), allows to obtain a
universal correlation function C(£). Although this leads to
a reasonable approximation, at least for the available neu-
tron differences, the exact form of the correlation function
of the chaotic contribution to the mass would be better
described by the discrete sum (5). This sum depends on the
precise properties of the periodic orbits, and is therefore
system and model dependent. Because of its discrete na-
ture, generically oscillations of the correlation as a func-
tion of x are expected. This contrasts with the uniform
universal nonoscillatory decay given by Eq. (12), which is
clearly an artifact of the approximation (9). Some tendency
towards negative values, and therefore of oscillatory be-
havior, seems to be present in the autocorrelation of the
errors shown in Fig. 2 at large values of . However, to be
conclusive, larger values of {, which are not experimen-
tally available, are needed [this problem might be over-
come by considering different nuclear chains [9]].

To conclude, let us recall that shell effects described by
periodic orbit theory related to regular motion are very
familiar in nuclear physics, particularly since the work of
Strutinsky [see Ref. [16] for a recent discussion]. What

about the contribution of unstable chaotic orbits? It has
been recently suggested that the size of the differences
between measured and computed binding energies can be
attributed to the presence of nuclear chaotic motion. The
work presented here goes one step further in this direction
by studying the autocorrelation function of the chaotic
contribution to nuclear masses. The result, that depends
on some well-identified physical parameters, is in good
agreement with the autocorrelation computed from several
existing models along isotopic chains. This gives further
support to the view that chaotic dynamics effects are

present in the ground state of atomic nuclei.
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