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k-Core Organization of Complex Networks
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We analytically describe the architecture of randomly damaged uncorrelated networks as a set of
successively enclosed substructures—k-cores. The k-core is the largest subgraph where vertices have at
least k interconnections. We find the structure of k-cores, their sizes, and their birthpoints—the bootstrap
percolation thresholds. We show that in networks with a finite mean number z2 of the second-nearest
neighbors, the emergence of a k-core is a hybrid phase transition. In contrast, if z2 diverges, the networks
contain an infinite sequence of k-cores which are ultrarobust against random damage.
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FIG. 1 (color online). The structure of a network with a k-core.
The k-core is the internal circle. Vertices of degrees smaller than
k form the light- gray area. The dark- gray regions are numerous
finite clusters with those vertices of degrees q � k, which do not
belong to the k-core . These clusters are either connected to the
k-core by less than k-edges or isolated from it.
Introduction.—Extracting and indexing highly intercon-
nected parts of complex networks—communities, cliques,
cores, etc.—as well as finding relations between these sub-
structures is an issue of topical interest in network re-
search, see, e.g., Refs. [1,2]. This decomposition helps
one to describe the complex topologies of real-world net-
works. In this respect, the notion of k-core is of fundamen-
tal importance [3,4]. The k-core may be obtained in the
following way. Remove from a graph all vertices of degree
less than k. Some of the rest of the vertices may remain
with less than k edges. Then remove these vertices, and so
on, until no further removal is possible. The result, if it
exists, is the k-core. Thus, a network is organized as a set of
successively enclosed k-cores, similar to a Russian nesting
doll.

The k-core decomposition was recently applied to a
number of real-world networks (the Internet, the World
Wide Web, cellular networks, etc.) [5–7] and has turned
out to be an important tool for visualization of complex
networks and interpretation of cooperative processes in
them. Rich k-core architectures of real networks were
revealed. Furthermore, a k-core related Jellyfish model
[8] is one of the popular models of the Autonomous
System graph of the Internet. The notion of the k-core is
a natural generalization of the giant connected component
in the ordinary percolation [9–11] (for another possible
generalization, see clique percolation in Ref. [12]).
Impressively, the giant connected component of an infinite
network with a heavy-tailed degree distribution is robust
against random damage of the net. The k-core percolation
implies the emergence of a giant k-core below a threshold
concentration of vertices or edges removed at random. In
physics, the k-core percolation (bootstrap percolation) on
the Bethe lattice was introduced in Ref. [13] for describing
some magnetic materials. Note that the k � 3-core perco-
lation is an unusual, hybrid phase transition with a jump of
the order parameter as at a first order phase transition, but
also with strong critical fluctuations as at a continuous
phase transition [13,14]. The k-core decomposition of a
random graph was formulated as a mathematical problem
in Refs. [3,4]. This attracted much attention from mathe-
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maticians [15,16], but actually only the criteria of emer-
gence of k-cores in basic random networks were found.

In this Letter we derive exact equations describing the
k-core organization of a randomly damaged uncorrelated
network with an arbitrary degree distribution. This allows
us to obtain the sizes and other structural characteristics of
k-cores in a variety of damaged and undamaged random
networks and find the nature of the k-core percolation in
complex networks. We apply our general results to the
classical random graphs and to scale-free networks, in
particular, to empirical router-level Internet maps. We
find that not only are the giant connected components in
infinite networks with slowly decreasing degree distribu-
tions resilient against random damage, as was known, but
their entire k-core architectures are robust.

Basic equations.—We consider an uncorrelated net-
work—a maximally random graph with a given degree
distribution P�q�—the so-called configuration model. We
assume that a fraction Q � 1� p of the vertices in this
network are removed at random. The k-core extracting
procedure results in the structure of the network with a
k-core depicted in Fig. 1.

Taking into account the treelike structure of the infinite
sparse configuration model shows that the k-core coincides
with the infinite (k� 1)-ary subtree [17]. (Them-ary tree is
a tree, where all vertices have branching at least m) Let R
be the probability that a given end of an edge of a network
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is not the root of an infinite (k� 1)-ary subtree. Then a
vertex belongs to the k-core if at least k of its neighbors are
roots of infinite (k� 1)-ary subtrees. So the probability
that a vertex is in the k-core is

M�k� � p
X
q�k

P�q�
Xq
n�k

CqnRq�n�1� R�n; (1)

where Cmn � m!=�m� n�!n!. Note that for the ordinary
percolation we must set k � 1 in this equation.

An end of an edge is not a root of an infinite (k� 1)-ary
subtree if at most k� 2 of its children’s branches are roots
of infinite (k� 1)-ary subtrees. This leads to the following
equation for R:

R�1�p�p
Xk�2

n�0

�X1
i�n

�i�1�P�i�1�

z1
CinR

i�n�1�R�n
�
:

(2)

Let us explain this equation. (i) The first term, 1� p � Q,
is the probability that the end of the edge is unoccupied.
(ii) CinRi�n�1� R�n is the probability that if a given end
of the edge has i children (i.e., other edges than the start-
ing edge), then exactly n of them are roots of infinite
(k� 1)-ary subtrees. �i� 1�P�i� 1�=z1 is the probability
that a randomly chosen edge leads to a vertex with branch-
ing i. z1 �

P
qqP�q� is the mean number of the nearest

neighbors of a vertex in the graph. Thus, in the square
brackets, we present the probability that a given end of
the edge has exactly n edges, which are roots of infinite
(k� 1)-ary subtrees. (iii) Finally, we take into account that
n must be at most k� 2.

The sum
Pk�2
n�0 in Eq. (2) may be rewritten as:

�k�R� �
Xk�2

n�0

�1� R�n

n!

dn

dRn
G1�R�; (3)

where G1�x� � z�1
1

P
qP�q�qx

q�1 � z�1
1 dG0�x�=dx, and

G0�x� �
P
qP�q�x

q [18]. Then Eq. (2) takes the form

R � 1� p� p�k�R�: (4)

In the case p � 1, Eq. (4) was recently obtained in [16]. If
Eq. (4) has only the trivial solution R � 1, there is no giant
k-core. The emergence of a nontrivial solution corresponds
to the birth of the giant k-core. It is the lowest nontrivial
solution R< 1 that describes the k-core.

Let us define a function

fk�R� � �1��k�R�	=�1� R�: (5)

This function is positive in the range R 2 �0; 1� and, in
networks with a finite mean number of the second neigh-
bors of a vertex, z2 �

P
qq�q� 1�P�q�; it tends to zero in

the limit R! 1 as fk�R� / �1� R�k�2. In terms of the
function fk�R�, Eq. (2) is especially simple:

pfk�R� � 1: (6)
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Depending on P�q�, with increasing R, fk�R� either
(i) monotonously decreases from fk�0�< 1 to fk�1� � 0,
or (ii) at first increases, then approaches a maximum at
Rmax 2 �0; 1�, and finally tends to zero at R! 1.
Therefore, Eq. (6) has a nontrivial solution R< 1 if

p max
R2�0;1�

fk�R� � 1: (7)

This is the criterion for the emergence of the giant k-core in
a randomly damaged uncorrelated network. The equality in
Eq. (7) takes place at a critical concentration pc�k� when
the line y�R� � 1=pc�k� touches the maximum of fk�R�.
Therefore the threshold of the k-core percolation is deter-
mined by two equations:

pc�k� � 1=fk�Rmax�; 0 � f0k�Rmax�: (8)

Rmax is the value of the order parameter at the birth point of
the k-core. At p < pc�k� there is only the trivial solution
R � 1.

At k � 2, Eq. (4) describes the ordinary percolation in a
random uncorrelated graph [10,11]. In this case, in infinite
networks we have Rmax ! 1, and the criterion (7) is re-
duced to the standard condition for existence of the giant
connected component: pG01�1� � z2=z1 � 1.

Let us find R near the k � 3-core percolation transition
in a network with a finite z2. We examine Eq. (4) for R �
Rmax � r and p � pc�k� � � with �; jrj 
 1. Note that at
k � 3, �k�R� is an analytical function in the range R 2
�0; 1�. It means that the expansion of �k�R� r� over r
contains no singular term at R 2 �0; 1�. Substituting this
expansion into Eq. (4), in the leading order, we find

Rmax � R / �p� pc�k�	1=2; (9)

i.e., the combination of a jump and the square root critical
singularity. The origin of this singularity is an intriguing
problem of the hybrid phase transition.

The structure of the k-core is essentially determined by
its degree distribution which we find to be

Pk�q� �
p

M�k�

X
q0�q

P�q0�Cq
0

q Rq
0�q�1� R�q: (10)

The mean degree of the k-core vertices is z1�k� �P
q�kPk�q�q. The k-core of a given graph contains the k�

1-core as a subgraph. Vertices which belong to the k-core,
but do not belong to the k� 1-core, form the k-shell of the
relative size S�k� � M�k� �M�k� 1�.

We apply our general results to two basic networks.
Erdős-Rényi graphs.—These random graphs have the

Poisson degree distribution P�q� � zq1 exp��z1�=q!, where
z1 is the mean degree. In this case, G0�x� � G1�x� �
exp�z1�x� 1�	. In Eq. (4), �k�R� � ��k� 1; z1�1� R�	=
��k� 1�, where ��n; x� is the incomplete gamma function.
From Eq. (1) we get the size of the k-core:

M�k� � pf1� ��k; z1�1� R�	=��k�g; (11)
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where R is the solution of Eq. (4). The degree distribu-
tion in the k-core is Pk�q � k� � pzq1�1� R�

qe�z1�1�R�=
�M�k�q!	. Our numerical calculations revealed that at
p � 1, the highest k-core increases almost linearly with
z1, namely, kh � 0:78z1 at z1 & 500. Furthermore, the
mean degree z1�k� in the k-core weakly depends on
k: z1�k� � z1.

Figure 2 shows the dependence of the size of the k-cores,
M�k�, on the concentration Q � 1� p of the vertices
removed at random. Note that counterintuitively, it is the
highest k-core—the central, most interconnected part of a
network—that is destroyed primarily. The inset of Fig. 2
shows that with increasing damage Q, the mean degree
z1�k� decreases. The k-cores disappear consecutively, start-
ing from the highest core. The k-core structure of the
undamaged Erdős-Rényi (ER) graphs is displayed in Fig. 3.

Scale-free networks.—We consider uncorrelated net-
works with a degree distribution P�q� / �q� c���. Let
us start with the case of � > 3, where z2 is finite. It turns
out that the existence of k-cores is determined by the
complete form of the degree distribution including its
low degree region. It was proved in Ref. [16] that there is
no k � 3-core in a graph with the minimal degree q0 � 1,
� � 3, and c � 0. We find that the k-cores emerge as c
increases. The k-core structure of scale-free graphs is
represented in Fig. 3. The relative sizes of the giant
k-cores in the scale-free networks are smaller than in the
ER graphs. As z2 is finite, the k � 3-core percolation at
� > 3 is the hybrid phase transition. This is in contrast to
the ordinary percolation in scale-free networks, where
behavior is nonstandard if � � 4 [10].

The case 2<� � 3 is realized in most important
real-world networks. With � in this range, z2 diverges if
N ! 1. In the leading order in 1� R
 1, Eq. (5) gives
fk�R� 
 �q0=k�

��2�1� R���3���. From Eq. (6) we find the
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FIG. 2. The size of the k-core, M�k�, in the Erdős-Rényi
random graph with the mean degree z1 � 10 versus the concen-
tration Q of vertices removed at random. The highest core
disappears at a very low concentration Q � 1:2% in contrast
to the ordinary percolation threshold Q � 90%. The inset shows
the mean degree z1�k� of vertices in the k-core.
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order parameter R. Substituting this solution into Eq. (1), in
the leading order in 1� R we find that the size of the
k-core decreases with increasing k:

M�k� � p�q0�1� R�=k	��1 � p2=�3����q0=k����1�=�3���:

(12)

The divergence of fk�R� at R! 1 means that the perco-
lation threshold pc�k� tends to zero as N ! 1. The k-core
percolation transition in this limit is of infinite order simi-
larly to the ordinary percolation [10]. As kh�N ! 1� !
1, there is an infinite sequence of successively enclosed
k-cores. One has to remove at random almost all vertices in
order to destroy any of these cores.

Equation (10) allows us to find the degree distribution of
k-cores in scale-free networks. For � > 2 and k� 1,
Pk�q� k� � ��� 1�k��1q��. The mean degree z1�k� in
the k-core grows linearly with k: z1�k� � kz1=q0 in con-
trast to the Erdős-Rényi graphs.

Finite-size effect.—The finiteness of the scale-free net-
works with 2< �< 3 essentially determines their k-core
organization. We introduce a size dependent cutoff qcut�N�
of the degree distribution. Here qcut�N� depends on details
of a specific network. For example, for the configuration
model without multiple connections, the dependence
qcut�N� �

����
N
p

is usually used if 2< �< 3. It is this
function that must be substituted into Eqs. (13)–(15) be-
low. A detailed analysis of Eq. (5) shows that the cut-
off dramatically changes the behavior of the function
fk�R� near R � 1. fk�R� has a maximum at Rmax 
 1�
�3� ���1=���2�k=qcut and tends to zero at R! 1 instead
of divergence. As a result, the k-core percolation again
becomes to be the hybrid phase transition. The cutoff
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FIG. 3. The relative sizes of the k-cores, M�k�, panel (a), and
k-shells, S�k�, panel (b), in the Erdős-Rényi graphs with z1 � 10
and 20; scale-free networks with � � 2:5, 4, and 7, and an
uncorrelated network with the degree distribution of the
router-level IR. The minimum degree in the scale-free networks
is q0 � 1. In the case � � 2:5, the maximum degree in the
network is qcut � 2000, and c � 2; for � � 4 and 7, c � 30 and
50, respectively.
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determines the highest k-core:

kh 
 p��� 2��3� ���3���=���2�qcut�q0=qcut�
��2: (13)

The sizes of the k-core at q0 
 k
 kh are given by
Eq. (12). The relative size of the highest k-core is

M�kh� 
 p��3� ������1�=���2� � 1	�q0=qcut�
��1: (14)

Finally, the threshold of the k-core percolation is

pc�k� � 1=fk�Rmax� 
 k=kh: (15)

If k! kh, then pc�k� ! 1, i.e., even minor random dam-
age destroys the highest kh-core. By using exact Eqs. (2)
and (1), we calculated numerically M�k� and S�k� for a
scale-free network with � � 2:5, see Fig. 3. These curves
agree with asymptotic expressions (12) and (14).
k-core organization of the router-level Internet.—We

consider the router-level Internet which has lower
degree-degree correlations than the Internet at the
Autonomous Systems (AS) level. We substitute the em-
pirical degree distribution of the router-level Internet as
seen in skitter and iffinder measurements [19] into our
exact equations and compare our results with the direct
k-core decomposition of this network. The calculated sizes
of k-cores and k-shells are shown in Fig. 3. The calculated
dependence S�k� [Fig. 3(b), the Internet map (IR) curve] is
surprisingly similar to the dependence obtained by the
direct k-core decomposition of, actually, a different net-
work—the AS-level Internet—in Ref. [6]. On the other
hand, one can see in Fig. 3 that the highest k-core with
kh � 10 occupies about 2% of the network, while a direct
k-core decomposition of the same router-level Internet map
in Ref. [5] revealed k-cores up to kh � 32. This difference
indicates the significance of degree-degree correlations,
which we neglected.

Discussion and conclusions.—It is important to indicate
a quantity critically divergent at the k-core’s birthpoint.
This is a mean size of a cluster of vertices of the k-core
with exactly k connections inside of the k-core. One may
show that it diverges as �dM�k�=dp� �p� pc��1=2 and
that the size distribution of these clusters is a power law at
the critical point.

One should note that the k-core (or bootstrap) percola-
tion is not related to the recently introduced k-clique
percolation [12] despite of the seemingly similar terms.
The k-clique percolation is due to the overlapping of
k-cliques—full subgraphs of k vertices—by k� 1 verti-
ces. Therefore, the k-clique percolation is impossible in
sparse networks with few loops, e.g., in the configuration
model and in classical random graphs, considered here.

In summary, we have developed the theory of k-core
percolation in damaged uncorrelated networks. We have
found that if the second moment of the degree distribution
of a network is finite, the k-core transition has the hybrid
nature. In contrast, in the networks with infinite z2, instead
of the hybrid transition, we have observed an infinite order
04060
transition, similarly to the ordinary percolation in this
situation. All k-cores in these networks are extremely
robust against random damage. It indicates the remarkable
robustness of the entire k-core architectures of infinite
networks with � � 3. Nonetheless, we have observed
that the finite networks are less robust, and increasing
failures successively destroy k-cores starting from the
highest one. Our results can be applied to numerous coop-
erative models on networks: a formation of highly con-
nected communities in social networks, the spread of
diseases, and many others.
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