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Bounds on Multipartite Entangled Orthogonal State Discrimination Using Local Operations
and Classical Communication

M. Hayashi,1 D. Markham,2,* M. Murao,2,3 M. Owari,2,† and S. Virmani4,‡

1Imai Quantum Computation and Information Project, ERATO, JST, Tokyo 113-0033, Japan,
and Superrobust Computation Project (21st Century COE by MEXT), University of Tokyo, Japan

2Department of Physics, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
3PRESTO, JST, Kawaguchi, Saitama 332-0012, Japan

4Optics Section, Blackett Laboratory and Institute for Mathematical Sciences, Imperial College, London SW7 2AZ, United Kingdom
(Received 22 June 2005; published 2 February 2006)
0031-9007=
We show that entanglement guarantees difficulty in the discrimination of orthogonal multipartite states
locally. The number of pure states that can be discriminated by local operations and classical commu-
nication is bounded by the total dimension over the average entanglement. A similar, general condition is
also shown for pure and mixed states. These results offer a rare operational interpretation for three
abstractly defined distancelike measures of multipartite entanglement.
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The problem of defining and understanding multiparty
entanglement is a major open question in the field of
quantum information. As entanglement theory becomes
more useful in other areas of many body physics, multi-
party entanglement becomes increasingly relevant to gen-
eral physics, too. Hence, understanding the meaning of
entanglement has become an interesting and important
question.

In the bipartite case, entanglement is fairly well under-
stood [1]. There are many entanglement measures defined
both operationally (in terms of the usefulness of states for
quantum information tasks) and abstractly (such that they
obey certain axioms and may be called entanglement mo-
notones). One of the most celebrated results in bipartite
entanglement theory is that for pure states essentially all
measures coincide and have clear operational relevance.
For more than two parties, however, the operational ap-
proach quickly becomes very difficult. There are no clear
‘‘units of usefulness,’’ and we have the possibility of
inequivalent types of entanglement [2]. Some abstract
measures do persist by their simplicity. In particular, those
measures that define ‘‘proximity’’ to the set of separable
states [3–5] have natural multiparty analogues. However,
due to their abstract definition, their operational meaning is
not clear and remains an open question.

In this Letter, we consider the connection between dis-
tancelike entanglement measures and the task of local
operations and classical communication (LOCC) state dis-
crimination with this question in mind. This task illustrates
the restriction of only having local access to a system,
fundamental to the use of entanglement in quantum infor-
mation (and notions of locality). Indeed, LOCC measure-
ment of quantum states is important for cryptographic
protocols [6], channel capacities [7], and distributed quan-
tum information processing [8].

Intuitively, we expect that entangled states are more
difficult to discriminate locally, since inherently they pos-
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sess properties that are nonlocal. Indeed, it is known that
entanglement can make LOCC discrimination more diffi-
cult [9]. But the exact relation is thus far unclear, and there
are no general quantitative results. The results that are
known can be confusing. One of the earliest results on
the subject reveals a set of nonentangled, product states
that cannot be discriminated perfectly by LOCC [10].
Later, it was shown that any two pure states can be dis-
criminated optimally by LOCC, no matter how entangled
they are [11]. There have been several results since then on
various LOCC settings [12], and connections have been
made to bipartite entanglement distillation and formation
[13]. However, many results are specific to the bipartite
case or only valid for specific scenarios.

We show a clear connection between distancelike mea-
sures of entanglement and LOCC state discrimination in
the general multipartite case. We first show how the con-
ditions imposed on the measurement by perfect state dis-
crimination can be rewritten in terms of a quantity which
looks like a ‘‘distance’’ to the closest separable state. As we
weaken these conditions, we then show that this relates
directly to three entanglement measures. Finally, combin-
ing these results gives a general (pure and mixed state)
bound and, for pure states, allows the following interpre-
tation: Entanglement gives an upper bound to the number
of pure states that can be discriminated perfectly by LOCC.

By using known entanglement results, we will give
examples of existing and new LOCC discrimination
bounds in a unified manner.

Theorem 1: A necessary condition for deterministic
LOCC discrimination of set f�iji � 1 . . .Ng is that the
following inequality holds:

X
i

d��i� � D; (1)

where D is the total dimension of the system, and
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d��i� :� min
1

trf�i!ig

such that

�i� 1 �
!i

trf�i!ig
� 0; �ii� !i 2 SEP; (2)

where SEP denotes the set of separable operators.
To prove theorem 1, we begin by listing some conditions

that the POVMs (positive operator value measures) must
satisfy. The task of state discrimination is to perform a
measurement (in our case, by LOCC) on a system to find
out which one of a set of states the system is in. If it is
possible to perfectly discriminate among a set of density
matrices S :� f�iji � 1 . . .Ng by LOCC, then it is neces-
sary that there exists a POVM fMig satisfying the following
conditions: X

i

Mi � 1; (3)

1 � Mi � 0; (4)

8 i trfMi�ig � 1; (5)

8 i Mi 2 SEP: (6)

Conditions (3) and (4) are simply the conditions that mean
fMig is a POVM. Condition (5) says that, given a state �i,
the result corresponding to outcome Mi occurs with proba-
bility 1; i.e., the discrimination is deterministic.
Condition (6) is known to be a necessary condition if the
POVM fMig is to be implementable by LOCC [9].

To make the connection to distances between states, we
first notice that any POVM element Mi can be expressed as
a positive number si � trfMig times a density matrix !i,
Mi � si!i. We can then use this to immediately rewrite
(3)–(6). Condition (5) is rewritten si � 1=trf�i!ig. Condi-
tion (6) means!i is separable. For pure states, si now looks
like a distancelike quantity between state �i and some
separable state !i, such that the remaining conditions are
satisfied (that is,

P
isi!i � 1, 1 � si!i � 0).

If we then minimize si such that conditions (4)–(6) are
satisfied for each i independently, we get exactly the defi-
nition of d��i� in theorem 1 (2). Condition (3) implies this
minimization must satisfyX

i

d��i� � D; (7)

completing the proof. �
At this point, d��� cannot be considered a ‘‘distance to

the closest separable state’’ entanglement measure. It turns
out that condition (i) in (2) complicates things a lot, and,
indeed, even without this condition, it is not an entangle-
ment monotone for mixed states [see the comment below
the definition of the geometric measure (15)]. Hence, the
connection to entanglement is not immediate. However, we
can use this quantity to relate the problem of state dis-
crimination to other distancelike entanglement monotones,
as in the following theorem.
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Theorem 2: The following bounds hold for all states �:

d��� � r��� � 2ER����S��� � 2G���; (8)

where G��� is the geometric measure; ER��� is the relative
entropy of entanglement; S��� is the von Neumann en-
tropy; and r��� :� jPj�1� RG�P=jPj�, where P is the
support of state � [14], jPj :� trfPg, and RG��� is the
robustness of entanglement of state �.

In the pure state case, S��� � 0 and P � �, and so these
quantities become exactly (up to log) the geometric mea-
sure of entanglement, the relative entropy of entanglement,
and the robustness of entanglement (from right to left). In
the mixed state case, they include some quantification of
how mixed the state is. This makes sense in the problem of
state discrimination, since the more mixed the states are,
the fewer orthogonal states there can be for a given Hilbert
space dimension D. We will later show that the quantities
in Eq. (8) are equivalent for GHZ states (these are multi-
partite states defined originally in Ref. [15]).

To prove the relationship to the robustness of entangle-
ment, we must first write d��� in a more convenient form.
We can rewrite condition (i) in (2), as h j!j i �
trf�!g8j i. By considering the spectral decomposition
of !, it follows that ! can always be rewritten in the
form ! � �jPj P

jPj � �1� �jPj�� with the additional con-
ditions trfP�g � 0 and � � h j!j i8j i. Hence,

d��� � min�1=��

such that 9 a state �; satisfying

! � �jPj
P
jPj
� �1� �jPj�� 2 SEP;

trfP�g � 0; � � h j!j i 8 j i:

(9)

We can now compare this to the global robustness of
entanglement Rg��� [3]

Rg��� :� mint

such that 9 a state �; satisfying

1

1� t
��� t�� 2 SEP:

(10)

We can understand this as the minimum (arbitrary) noise �
that we need to add to make the state separable.

We can see that the global robustness of entanglement of
the support of state �, RG�P=jPj�, is very similar in defi-
nition to d��� above, (9), the crucial difference being the
removal of the two conditions in the last line of (9). Since
relaxing conditions can lead only to a lower minimum, we
can see that

d��� � r��� :� jPj�1� Rg�P=jPj�	; (11)

proving the left inequality of theorem 2.
For the center and right inequalities of theorem 2, we

consider the two quantities separately.
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FIG. 1. To discriminate the pure states fj’iigNi�1 perfectly
under LOCC, the sum of the entanglement ‘‘distances’’
E�j’ii� must be less than the total dimension D (theorems 1
and 2); thus, N � D=E�j’ii�.
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The relative entropy of entanglement is defined as [4]

ER��� :� min
!2SEP

S�� k !�; (12)

where S�� k !� � �S��� � trf�log2!g is the relative en-
tropy and S��� is the von Neumann entropy. From the
definition of Rg���, we know that, for some state �, the
state given by !i :� �Pi=jPij � Rg�Pi=jPij��	=�1�
Rg�Pi=jPij�	 is a separable state. Hence, the following
inequalities must hold:

ER��i� � S��i� � �tr
�
�ilog2

�Pi=jPij � Rg�Pi=jPij��
1� Rg�Pi=jPij�

��

� �tr
�
�ilog2

�
Pi=jPij

1� Rg�Pi=jPij�

��

� log2�jPij�1� Rg�Pi=jPij��	; (13)

where the second line follows from the monotonicity of the
logarithm, which states that log�A� B� � log�A� when-
ever B � 0, for two operators A;B [16]. The last line is true
even if �i is any state in the span of Pi. Hence,

2ER��i��S��i� � r��i�: (14)

We call the geometric measure G���

G��� :� �log2f max
!2SEP

trf�!gg: (15)

In the case of pure states, this reduces to the geometric
measure of entanglement [5]. However, for mixed states,
this is not an entanglement monotone (for example, it is
maximized by the maximally mixed state). We immedi-
ately see that this would be equivalent (up to log) to d��� in
(2) if we were to drop condition (i). Hence, we have d��� �
2G���. However, it is possible to show a stronger bound. In
Ref. [17] it was shown that in the pure state case G��� is
bounded from above by the relative entropy of entangle-
ment. We use the same simple concavity arguments now
for the mixed state case. By definition, ER��i� � S��i� �
�max!2SEP trf�log2!g. By concavity of the logarithm, we
have for all �;!, trf�log2!g � trf�!g. Thus,

ER��� � S��� � G���: (16)

Combining (11), (14), and (16), we get theorem 2. �
We will now look at how we can use our necessary

conditions to bound the maximum number of states that
can be discriminated locally. Combining theorems 1 and 2,
and dividing by N, we obtain the following corollary.

Corollary: The number of states N that can be discrimi-
nated perfectly by LOCC is bounded by

N � D=d��i� � D=r��i� � D=2ER��i��S��i� � D=2G��i�;

(17)

where �xi :� 1=N
PN
i�1 xi denotes the ‘‘average.’’

Hence, in the pure state case, where the bounds reduce to
the geometric measure of entanglement, the relative en-
tropy of entanglement, and the robustness of entanglement
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(from right to left), we can interpret these three distance-
like measures as bounds on the number of pure states that
we can discriminate perfectly by LOCC (see Fig. 1).

Given this hierarchy of bounds (17), we can apply
known results from entanglement theory to find some
bounds on N, one of which we will show is tight. First,
the robustness of entanglement is completely solved for
pure bipartite states [3]. For a state with Schmidt decom-
position j i �

P
i�ijiii, the robustness was found to be

Rg� � � �
P
i�i�

2 � 1. We can immediately put this into
(17). For instance, if we have a set of pure bipartite states
all with the same entanglement (Bi), we have

N�Bi� � d1d2

��X
i

�i

�
2
; (18)

where d1; d2 are the dimensions of the Hilbert spaces and
�i are the Schmidt coefficients for any one of the states in
the set. This has the consequence that it is impossible to
distinguish more than dmaximally entangled states [where
d is the dimension of one subspace, then �

P
�i�

2 � d],
reproducing a known result [18,19].

In the multiparty case, we know from Wei et al. [17]
that, for the m-party W state jWi :� j00 . . . 01i �
j00 . . . 10i � . . .� j01 . . . 00i � j10 . . . 00i and GHZ state
jGHZi :� j0i
m � j1i
m, the relative entropy of entan-
glement and the geometric measure coincide and are
given by ER�jGHZi� � EG�jGHZi� � 1 and ER�jWi� �
EG�jWi� � log2�m=�m� 1���m�1�. Therefore, for any set
of states where the state with the average geometric mea-
sure (or the lowest) is that of GHZ or W, we have

N�GHZ� � 2m�1N�W� � 2m��m� 1�=m��m�1�: (19)

In fact, if we now call N�SGHZ� the maximum number of
states, in a set made of all GHZ type states (i.e., GHZ up to
local unitary transformations), that can be discriminated
perfectly by LOCC, then we can showN�SGHZ� � 2m�1 by
explicit construction. We form a set of states SGHZ �

fjGHZii :� 1 
UijGHZig2
m�1

i�1 by local unitaries fUig
over m� 1 parties. The fUig are formed from all the
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possible combinations of products of the identity and �x
Pauli operations, e.g., U1 � 1
m�2 
 �x, giving a set ofPm�1
k�0 �

m�1
k � � 2m�1 states. It is easy to check that these can

be discriminated by making local �z measurements.
Calling SW a set of states equal to the W state up to local
unitary transformations with (19) gives

N�SW�<N�SGHZ�: (20)

We also note that, if we can find such a bound by any of
the entanglement measures in (17) and show it is tight,
those measures below it in the hierarchy are equal. The
GHZ case is such an example giving RG�jGHZi� � 1, and
is one of the few cases where the global robustness of
entanglement is known for multiparty systems. We round
off the examples by showing another simple known result.
If even one state in a complete basis is entangled, then (17)
shows that the basis cannot be discriminated perfectly [20].

The simplicity of the basis for the proofs of the main
results here allows it to be used with other necessary
conditions on LOCC measurements. The condition of
separability (6), for example, may be changed to more
tractable conditions such as positivity of partial transpose
or biseparability [21]. It can easily be seen that these
conditions would lead to analogous bounds to those de-
rived above. In the case of biseparability, the example of
bipartite states above shows that, for pure states, it is
always possible to give some easily computable bound.

We have given an interpretation of the global robustness
of entanglement, the relative entropy of entanglement, and
the geometric measure of entanglement as bounds on the
number of pure states that can be discriminated perfectly
by LOCC. Our general mixed state results imply that the
presence of entanglement guarantees a certain minimal
level for this difficulty. The difficulty of LOCC state dis-
crimination is an important consideration in various quan-
tum information tasks (e.g., quantum data hiding [9]),
which may give more uses of these results. This is the
topic of ongoing investigations. In this direction, it is also
possible to extend theorem 1 to the case of imperfect
discrimination. This leads to bounds on the LOCC acces-
sible information, as in Refs. [19,22], which will be pre-
sented in a separate paper.

We thank Keiji Matsumoto and Martin Plenio for useful
discussions. This work was sponsored by the Asahi Glass
Foundation, the JSPS, Leverhulme Trust, and the Royal
Commission for the Exhibition of 1851.
*Corresponding author.
Electronic address: markham@phys.s.u-tokyo.ac.jp

†Corresponding author.
Electronic address: s.virmani@imperial.ac.uk

‡Corresponding author.
Electronic address: owari@eve.phys.s.u-tokyo.ac.jp

[1] M. Horodecki, Quantum Inf. Comput. 1, 3 (2001).
04050
[2] W. Dür, G. Vidal, and J. I. Cirac, Phys. Rev. A 62, 062314
(2000); S. Ishizaka and M. B. Plenio, Phys. Rev. A 72,
042325 (2005).

[3] G. Vidal and R. Tarrach, Phys. Rev. A 59, 141 (1999);
A. W. Harrow and M. A. Nielsen, Phys. Rev. A 68, 012308
(2003); M. Steiner, Phys. Rev. A 67, 054305 (2003).

[4] V. Vedral and M. B. Plenio, Phys. Rev. A 57, 1619 (1998).
[5] A. Shimony, Ann. N.Y. Acad. Sci. 755, 675 (1995);

H. Barnum and N. Linden, J. Phys. A 34, 6787 (2001);
T.-C. Wei and P. M. Goldbart, Phys. Rev. A 68, 042307
(2003).

[6] C. H. Bennett and G. Brassard, in Proceedings of the IEEE
International Conference on Computers, Systems and
Signal Processing (IEEE, New York, 1984); A. K. Ekert,
Phys. Rev. Lett. 67, 661 (1991).

[7] P. Hayden and C. King, quant-ph/0409026; J. Watrous,
Phys. Rev. Lett. 95, 080505 (2005).

[8] J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello,
Phys. Rev. A 59, 4249 (1999).

[9] B. M. Terhal, D. P. DiVincenzo, and D. W. Leung, Phys.
Rev. Lett. 86, 5807 (2001).

[10] C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor,
E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters,
Phys. Rev. A 59, 1070 (1999).

[11] J. Walgate, A. J. Short, L. Hardy, and V. Vedral, Phys. Rev.
Lett. 85, 4972 (2000); S. Virmani, M. F. Sacchi, M. B.
Plenio, and D. Markham, Phys. Lett. A 288, 62 (2001);
Z. Ji, H. Cao, and M. Ying, Phys. Rev. A 71, 032323
(2005).

[12] M. Hillery and J. Mimih, Phys. Rev. A 67, 042304 (2003);
P. X. Chen and C. Z. Li, Phys. Rev. A 68, 062107 (2003);
S. de Rinaldis, Phys. Rev. A 70, 022309 (2004);
S. Virmani and M. B. Plenio, Phys. Rev. A 67, 062308
(2003); F. Anselmi, A. Chefles, and M. B. Plenio,
New J. Phys. 6, 164 (2004); A. Chefles, Phys. Rev. A
69, 050307(R) (2004); H. Fan, Phys. Rev. Lett. 92, 177905
(2004).

[13] P. Badzia̧g, M. Horodecki, A. Sen, and U. Sen, Phys. Rev.
Lett. 91, 117901 (2003); M. Horodecki, J. Oppenheim,
A. Sen(De), and U. Sen, Phys. Rev. Lett. 93, 170503
(2004); S. Ghosh, P. Joag, G. Kar, S. Kunkri, and
A. Roy, Phys. Rev. A 71, 012321 (2005).

[14] The support of a state �, with eigendecomposition � �P
i�ijiihij, is given by P �

P
ijiihij.

[15] D. M. Greenberger, M. Home, and A. Zeilinger, in Bell’s
Theorem, Quantum Theory, and Conceptions of the
Universe, edited by M. Kafatos (Kluwer, Dordrecht,
1989), p. 69.

[16] R. Bhatia, Matrix Analysis, Springer Graduate Texts in
Mathematics Vol. 169 (Springer, New York, 1991).

[17] T.-C. Wei, M. Ericsson, P. M. Goldbart, and W. J. Munro,
Quantum Inf. Comput. 4, 252 (2004).

[18] S. Ghosh, G. Kar, A. Roy, A. Sen(De), and U. Sen, Phys.
Rev. Lett. 87, 277902 (2001); S. Ghosh, G. Kar, A. Roy,
and D. Sarkar, Phys. Rev. A 70, 022304 (2004).

[19] M. Nathanson, J. Math. Phys. (N.Y.) 46, 062103 (2005).
[20] M. Horodecki, A. Sen(De), U. Sen, and K. Horodecki,

Phys. Rev. Lett. 90, 047902 (2003).
[21] E. M. Rains, Phys. Rev. A 60, 179 (1999); 63, 019902(E)

(2001).
[22] D. P. DiVincenzo, D. W. Leung, and B. M. Terhal, IEEE

Trans. Inf. Theory 48, 580 (2002).
1-4


