Diebel and Dunham Reply: Fiorentini and Lopez [1] have identified a lower energy structure for the F₄V complex than the higher symmetry structure which we considered in Ref. [2]. Our calculations using the methods described in Ref. [2] confirm the lower energy of this structure. By exploring a range of configurations, we also found lower energy structures for F_3V , F_4V_2 , F_5V_2 , and F_6V_2 . The energy differences are most significant for higher F to V ratios, and these F_nV_m structures have rotated Si-F bonds similar to F_4V , which allow larger F-F spacing as noted in the Comment [1]. In this Reply, we have updated Table I and Fig. 3 from Ref. [2] to include these values. While some of the numbers have changed, the overall conclusions of our work on F in Si [2,3] remain valid (and are, in fact, confirmed in a recent paper by the authors of the Comment [4]): The strong binding of F to vacancies leads to immobilization and segregation of F in V-rich regions during ion implant annealing, giving rise to apparent uphill F diffusion and reduction of B transient enhanced diffusion. In Table I, the formation and binding energies for different F_nV_m configurations are listed. For two or more F atoms, F_nV_m structures are favored over the interstitial configurations. For the F_nV structures, the binding energy gained by adding additional fluorine atoms is approximately constant (≈ -2 eV). For F_nV_2 , the binding energies of F to V_2 are similar to that for F_nV , with slightly larger binding energies for the first two F atoms. The lower energy asymmetric structures show greater bond angle distortion but much smaller changes in bond length compared to the structures analyzed in Ref. [2]. With the updated values, the saturated F_4V structure (rather than the F_6V_2) is stable in the presence of interstitials (apparent once Table II of Ref. [2] is updated with values of Table I). TABLE I. Binding energies of $F_n V_m$ for $E_F = E_V + 0.45$ eV (intrinsic Fermi level at 650 °C [2]). For midgap Fermi level, clusters are predominantly neutral. The total binding energies (E_b^{tot}) are calculated with respect to lowest energy interstitial fluorine configuration (F_{tet}) and neutral vacancies. The formation energies (E_f) include energy to form required vacancies. | Structure | E_b per F [eV] | E_b last F [eV] | E_b^{tot} [eV] | E_f [eV] | |----------------|------------------|-------------------|-------------------------|------------| | \overline{V} | | | | +3.38 | | FV | -1.95 | -1.95 | -1.95 | +1.43 | | F_2V | -1.88 | -1.80 | -3.75 | -0.37 | | F_3V | -1.93 | -1.96 | -5.71 | -2.33 | | F_4V | -1.91 | -2.00 | -7.71 | -4.33 | | V_2 | | | -1.45 | +5.31 | | FV_2 | -2.31 | -2.31 | -3.77 | +3.00 | | F_2V_2 | -2.37 | -2.43 | -6.20 | +0.57 | | F_3V_2 | -2.17 | -1.78 | -7.97 | -1.21 | | F_4V_2 | -2.13 | -2.01 | -9.98 | -3.22 | | F_5V_2 | -2.09 | -1.90 | -11.88 | -5.12 | | F_6V_2 | -2.09 | -2.09 | -13.98 | -7.22 | FIG. 1 (color online). Equilibrium concentration of various F_nV_m structures vs. total F concentration at 650 °C. In Fig. 1, estimated equilibrium concentrations of F structures versus total F concentration are shown. The fully saturated clusters F_6V_2 and F_4V are the most important in equilibrium. Out of equilibrium, a cascade of reactions involving point defects and F_nV_m clusters determine the dynamic behavior [3]. In the presence of nonequilibrium point-defect concentrations, the local equilibrium F_nV_m concentrations need to be multiplied by $(C_V/C_V^*)^m$. Thus, in the presence of excess vacancies during initial stages of implant annealing, almost all fluorine will reside in F_nV_m structures. Milan Diebel* Department of Physics University of Washington Seattle, Washington 98195-1560, USA Scott T. Dunham Department of Electrical Engineering University of Washington Seattle, Washington 98195-2500, USA Received 27 July 2005; published 23 January 2006 DOI: 10.1103/PhysRevLett.96.039602 PACS numbers: 61.72.Bb, 61.72.Ji, 61.72.Tt *Electronic address: diebel@u.washington.edu - [1] V. Fiorentini and G. M. Lopez, preceding Comment, Phys. Rev. Lett. **96**, 039601 (2006). - [2] M. Diebel and S. T. Dunham, Phys. Rev. Lett. 93, 245901 (2004). - [3] M. Diebel and S.T. Dunham, Mater. Res. Soc. Symp. Proc. **717**, C4.5.1 (2002); M. Diebel *et al.*, Mater. Res. Soc. Symp. Proc. **765**, D6.15.1 (2003). - [4] G. M. Lopez et al., Phys. Rev. B 72, 045219 (2005).