Diebel and Dunham Reply: Fiorentini and Lopez [1] have identified a lower energy structure for the F₄V complex than the higher symmetry structure which we considered in Ref. [2]. Our calculations using the methods described in Ref. [2] confirm the lower energy of this structure. By exploring a range of configurations, we also found lower energy structures for F_3V , F_4V_2 , F_5V_2 , and F_6V_2 . The energy differences are most significant for higher F to V ratios, and these F_nV_m structures have rotated Si-F bonds similar to F_4V , which allow larger F-F spacing as noted in the Comment [1]. In this Reply, we have updated Table I and Fig. 3 from Ref. [2] to include these values. While some of the numbers have changed, the overall conclusions of our work on F in Si [2,3] remain valid (and are, in fact, confirmed in a recent paper by the authors of the Comment [4]): The strong binding of F to vacancies leads to immobilization and segregation of F in V-rich regions during ion implant annealing, giving rise to apparent uphill F diffusion and reduction of B transient enhanced diffusion.

In Table I, the formation and binding energies for different F_nV_m configurations are listed. For two or more F atoms, F_nV_m structures are favored over the interstitial configurations. For the F_nV structures, the binding energy gained by adding additional fluorine atoms is approximately constant (≈ -2 eV). For F_nV_2 , the binding energies of F to V_2 are similar to that for F_nV , with slightly larger binding energies for the first two F atoms. The lower energy asymmetric structures show greater bond angle distortion but much smaller changes in bond length compared to the structures analyzed in Ref. [2]. With the updated values, the saturated F_4V structure (rather than the F_6V_2) is stable in the presence of interstitials (apparent once Table II of Ref. [2] is updated with values of Table I).

TABLE I. Binding energies of $F_n V_m$ for $E_F = E_V + 0.45$ eV (intrinsic Fermi level at 650 °C [2]). For midgap Fermi level, clusters are predominantly neutral. The total binding energies (E_b^{tot}) are calculated with respect to lowest energy interstitial fluorine configuration (F_{tet}) and neutral vacancies. The formation energies (E_f) include energy to form required vacancies.

Structure	E_b per F [eV]	E_b last F [eV]	E_b^{tot} [eV]	E_f [eV]
\overline{V}				+3.38
FV	-1.95	-1.95	-1.95	+1.43
F_2V	-1.88	-1.80	-3.75	-0.37
F_3V	-1.93	-1.96	-5.71	-2.33
F_4V	-1.91	-2.00	-7.71	-4.33
V_2			-1.45	+5.31
FV_2	-2.31	-2.31	-3.77	+3.00
F_2V_2	-2.37	-2.43	-6.20	+0.57
F_3V_2	-2.17	-1.78	-7.97	-1.21
F_4V_2	-2.13	-2.01	-9.98	-3.22
F_5V_2	-2.09	-1.90	-11.88	-5.12
F_6V_2	-2.09	-2.09	-13.98	-7.22

FIG. 1 (color online). Equilibrium concentration of various F_nV_m structures vs. total F concentration at 650 °C.

In Fig. 1, estimated equilibrium concentrations of F structures versus total F concentration are shown. The fully saturated clusters F_6V_2 and F_4V are the most important in equilibrium. Out of equilibrium, a cascade of reactions involving point defects and F_nV_m clusters determine the dynamic behavior [3]. In the presence of nonequilibrium point-defect concentrations, the local equilibrium F_nV_m concentrations need to be multiplied by $(C_V/C_V^*)^m$. Thus, in the presence of excess vacancies during initial stages of implant annealing, almost all fluorine will reside in F_nV_m structures.

Milan Diebel*
Department of Physics
University of Washington
Seattle, Washington 98195-1560, USA

Scott T. Dunham
Department of Electrical Engineering
University of Washington

Seattle, Washington 98195-2500, USA

Received 27 July 2005; published 23 January 2006 DOI: 10.1103/PhysRevLett.96.039602 PACS numbers: 61.72.Bb, 61.72.Ji, 61.72.Tt

*Electronic address: diebel@u.washington.edu

- [1] V. Fiorentini and G. M. Lopez, preceding Comment, Phys. Rev. Lett. **96**, 039601 (2006).
- [2] M. Diebel and S. T. Dunham, Phys. Rev. Lett. 93, 245901 (2004).
- [3] M. Diebel and S.T. Dunham, Mater. Res. Soc. Symp. Proc. **717**, C4.5.1 (2002); M. Diebel *et al.*, Mater. Res. Soc. Symp. Proc. **765**, D6.15.1 (2003).
- [4] G. M. Lopez et al., Phys. Rev. B 72, 045219 (2005).