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Polynomial Growth in Branching Processes with Diverging Reproductive Number
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We study the spreading dynamics on graphs with a power law degree distribution pk � k��, with 2<
�< 3, as an example of a branching process with a diverging reproductive number. We provide evidence
that the divergence of the second moment of the degree distribution carries as a consequence a qualitative
change in the growth pattern, deviating from the standard exponential growth. First, the population growth
is extensive, meaning that the average number of vertices reached by the spreading process becomes of the
order of the graph size in a time scale that vanishes in the large graph size limit. Second, the temporal
evolution is governed by a polynomial growth, with a degree determined by the characteristic distance
between vertices in the graph. These results open a path to further investigation on the dynamics on
networks.
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Branching processes model the evolution of populations
whose elements reproduce generating new elements [1,2],
such as a population of physical particles [3,4], cells [2], or
infected individuals [5]. A key magnitude determining the
dynamical evolution of the population size is the average
reproductive number ~R, giving the number of secondary
particles generated by a primary particle. When ~R< 1, the
average number of new elements decreases exponentially,
while it grows exponentially when 1< ~R<1 [1]. On the
other hand, it has been found recently that ~R may be
unbounded for branching processes taking place on graphs
with a power law degree distribution [5–9], where by
unbounded we mean that ~R diverges with increasing graph
size. This observation is extremely important, since several
graphs representing interactions among humans or com-
puters are characterized by a power law degree distribution
[10–14], requiring us to consider branching processes with
an unbounded average reproductive number.

Barthélemy et al. [15] have recently studied the spread-
ing dynamics of an infectious disease on a graph with a
power law degree distribution. Using a mean-field ap-
proach, they obtained that the average number of infected
vertices grows exponentially in time with a characteristic
time �� hk2i�1, where hk2i is the second moment of the
degree distribution pk. For graphs where pk � k��, with
2<�< 3, the second moment diverges and �! 0 with
increasing graph size, predicting that all vertices will be
instantaneously infected [15]. A disease that spreads at a
constant rate, however, cannot spread to all vertices in a
time scale much smaller than the inverse of the spreading
rate, indicating that the predicted exponential growth
should not dominate the system’s dynamics.

In this Letter, we study branching processes with an
unbounded average reproductive number using a spreading
process on a graph as a case study. When the degree
distribution has the power law tail pk � k��, with 2< �<
3, we obtain that the exponential regime is followed by a
polynomial growth in time, a result that is completely
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unexpected based on previous mathematical studies. We
also show that both the characteristic time separating the
exponential and polynomial regimes and the polynomial
degree depend on the characteristic distance between ver-
tices. More important, in the limit of infinite graph sizes,
the exponential regime is virtually absent, indicating that
the polynomial regime is a novel and characteristic feature
of the spreading dynamics on graphs with degree exponent
2<�< 3 and, more generally, of branching processes
with an unbounded average reproductive number.

Consider a spreading process on a graph with a treelike
structure. At t � 0, a vertex selected at random is infected
by a ‘‘virus,’’ which can then propagate to other vertices
through the graph edges. The causal tree representing the
spreading process can be modeled as a branching process.
Each vertex in the causal tree represents an infected vertex
in the original graph, and each arc in the causal tree
represents the generation of a secondary infected vertex
from a primary infected vertex. The out-degree of a vertex
in the causal tree gives the number of other vertices it
infects, i.e., its reproductive number. In turn, the length
of an arc A! B in the causal tree gives the generation
time, the time elapsed from the infection of the primary
case A to the infection of the secondary case B. Finally, the
vertex generation coincides with the topological distance
from the first infected vertex, the root, in the original graph.

We assume that the reproductive numbers are indepen-
dent random variables with the probability distribution q�d�k
and average reproductive number R�d� �

P
kq
�d�
k k, parame-

trized by the generation d. The parametrization by d is
introduced to take into account that the degree distribution
may change significantly from generation to generation
[7,16]. We also assume that the generation times are inde-
pendent random variables with the distribution G�d���� and
the probability density g�d���� � dG�d����=d�. Let P�d�N �t�
be the probability distribution of the number of vertices N
that are found at time t in a branch of the causal tree, given
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that the branch is rooted at a vertex at generation d.
Because of the tree structure, we can write the recursive
relation

P�d�N �t� �
X1
k�0

q�d�k
X1
N1�0

. . .
X1
Nk�0

�Pk
i�1

Ni�1;N

�
Yk
i�1

�Z t

0
dG�d����P�d�1�

Ni
�t� ��

� �Ni;0�1�G
�d��t��

�
; (1)

with the boundary condition P�D�N �t� � �N;1, whereD is the
maximum distance between two vertices on the graph. The
sum over k runs over the possible reproductive numbers of
the reference vertex, while the sum over Ni, i � 1; . . . ; k,
runs over the possible number of infected vertices in the
branch rooted at the ith neighbor of the reference vertex.
These sums are then restricted by the Kronecker delta to
configurations satisfying 1�

Pk
i�1 Ni � N. Finally, within

the �	 	 	
 we have the probability that the branch rooted at
the ith neighbor has Ni infected vertices at time t� �,
averaged over the generation time distribution G���. The
product structure in (1) suggests the use of the generating
functions

H�d��x� �
X1
k�0

q�d�k x
k; (2)

F�d��x; t� �
X1
N�0

P�d�N �t�x
N; (3)

for the reproductive number and the number of infected
vertices, respectively. From (1)–(3), we obtain

F�d��x; t� � xH�d�
�Z t

0
dG�d����F�d�1��x; t� ��

� 1�G�d��t�
�
; (4)

with the boundary condition F�D��x� � x. From this equa-
tion, we obtain the average number of infected vertices on
the branch rooted at a vertex at generation d,

N�d��t� �
@F�d��1; t�

@x
; (5)

with the boundary condition N�D��t� � 1. Iterating this
equation from d � D to d � 0, we obtain the average
number of infected vertices at time t, N�0��t�, and the
average number of new vertices infected between t and
t� dt, n�t� � dN�0��t�=dt, resulting in

n�t� �
XD
d�1

zd�g�0� � g�1� � 	 	 	 � g�d��t��; (6)

where
03870
zd �
Yd
l�0

Rl (7)

is the average number of vertices at generation d, and the
second factor is the probability that the infection has
reached a vertex at generation d, where � denotes the
convolution operation, for instance, g�0� � g�1��t� �R
t
0 d�g

�0����g�1��t� ��.
Next we consider the cases when (i) the reproductive

number of vertices other than the root has the same statis-
tical properties, i.e., R�0� � R and R�d� � ~R for d � 1, and
(ii) the infection is transmitted from an infected vertex to a
susceptible (not yet infected) vertex at constant rate 1=TG.
This last assumption corresponds to an exponential distri-
bution of generation times G�d���� � 1� exp��t=TG�,
with average generation time TG. Under these approxima-
tions from (6) and (7), we obtain

n�t� �
R
TG

exp
�
�

t
TG

� XD
d�1

1

�d� 1�!

� ~Rt
TG

�
d�1

: (8)

The sum in (8) is the Taylor series expansion of
exp� ~Rt=TG�, up to the D� 1 order. It actually approxi-
mates an exponential function depending on the ratio of
t=�0, where

�0 � TG
D
~R
: (9)

When t �0, we obtain

n�t� �
R
TG

exp
�
� ~R� 1�

t
TG

�
; (10)

becoming an exponential growth for ~R> 1 [1,15]. In con-
trast, when t� �0 we obtain a polynomial growth fol-
lowed by an exponential decay:

n�t� �
R ~RD�1

TG�D� 1�!

�
t
TG

�
D�1

exp
�
�

t
TG

�
: (11)

In general, the time scale �0 depends on the graph size
N0. For random graphs with an arbitrary degree distribu-
tion, q�0�k � pk and q�d�k � �k� 1�pk�1=hki for d > 0 [7],
resulting in R� hki and ~R� hk2i, where hki and hk2i are
the first and second moments of the degree distribution,
respectively. In this case, we obtain the following
scenarios.

(i) When the tail of the degree distribution decays faster
than pk � k�3, the diameter scales asD� logN0 [7], while
~R is constant or approaches a constant in the large graph
size limit. Thus, from (9) it follows that

�0 �
TG
~R

logN0: (12)

In this case, the exponential growth lasts until t� �0,
where �0 ! 1 when N0 ! 1.
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FIG. 1 (color online). Fraction of infected nodes ��t� �
n�t�=N0 as a function of time resulting from SI model simula-
tions on random graphs with a power law degree distribution
pk � Ak��, with (a) � � 3:5 and (b) � � 2:5. Different symbols
correspond to different graph sizes: N0 � 1000 (circles), 10 000
(squares), and 100 000 (triangles). (a) For � � 3:5, the spreading
dynamics is characterized by an exponential growth (line), as
predicted by (10). (b) For � � 2:5, the number of new infections
is better described by (11) (line). There are some deviations at
short times, but they get reduced with increasing the graph size.
The inset shows the exponent D resulting from the fit of (11) as a
function of the average distance hdi between two nodes in the
graph. The increase in hdi is obtained by increasing the network
size from N0 � 1000 to 10 000 and 100 000. The line empha-
sizes the linear scaling between D and hdi.
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(ii) When the degree distribution has the power law tail
pk � k

��, with 2< �< 3, the diameter D increases at
most as logN0 [17–19], while ~R� N�3���=���1�

0 . Thus,
from (9) it follows that

�0 � TG
logN0

N�3���=���1�
0

: (13)

The initial exponential growth is, thus, a finite size effect
restricted to t �0, where �0 ! 0 when N0 ! 1.
Following this vanishing time window, the number of
infected vertices is already of the order of the graph size
N0 (R ~R� N0), and its temporal evolution is polynomial
(11), with a degree determined by the characteristic dis-
tance between vertices in the underlying graph.

To check the validity of our calculations, we perform
numerical simulations of the susceptible infected (SI)
model on random graphs with a power law degree distri-
bution pk � Ak��. Within this model, vertices can be in
two states, susceptible or infected, and infected vertices
transmit the infection to each of their neighbors at a
constant rate 1=TG [20]. We generate random graphs
with a power law degree distribution using the algo-
rithm proposed in Ref. [21]. Then we generated single
outbreaks on these graphs, starting from one infected ver-
tex. Finally, we take averages over 10 000 outbreaks, start-
ing from randomly selected vertices, and over 100 graph
realizations.

When � > 3, the spreading dynamics is better described
by an initial exponential growth [Fig. 1(a)], in agreement
with (10) and previous mathematical approaches
[15,20,22]. In contrast, when 2< �< 3, the spreading
dynamics is better described by (11) [Fig. 1(b)], and the
exponent D resulting from the fit to the numerical data
scales linearly with the average distance between nodes
[see inset in Fig. 1(b)]. In a more realistic scenario, we use
the SI model to simulate the spreading of a routing table
error on the autonomous system (AS) network represen-
tation of the Internet [23]. This network is characterized by
a power law degree distribution with � � 2:1 [11], but it
also exhibits degree-degree correlations [11] and a large
degree dependent clustering coefficient [24]. Yet the aver-
age number of new infections is well fitted by (11), in-
dicating that our predictions are also valid for graphs that
are not random as well (see Fig. 2).

With relevance to the spreading of computer virus and
worms among email users, there is empirical evidence
indicating that email networks are characterized by a
power law degree distribution with 2< �< 3 [13,14].
The transmission rates of computer viruses are, however,
of the order of their typical detection times, making diffi-
cult the empirical observation of the initial epidemic
growth. With relevance to sexually transmitted diseases,
there are several reports indicating that the network of
sexual contacts is characterized by a power law degree
distribution [12,25,26], with an exponent � > 3 for some
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communities and 2<�< 3 for others. This fact together
with the results obtained in this work represent a possible
explanation for the observation of both exponential and
polynomial HIV epidemic growth in different populations
[22,27,28]. The available data is, however, not sufficient to
make a definitive conclusion.

In a more general perspective, our results indicate that
the degree statistics is not sufficient to characterize the
spreading dynamics and probably other dynamical pro-
cesses, taking place on graphs with a power law degree
distribution with exponent 2< �< 3. To determine the
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FIG. 2 (color online). Fraction of infected nodes ��t� �
n�t�=N0 as a function of time resulting from SI model simula-
tions on AS networks, of September 1997 with N0 � 3015
(circles) and of October 2001 with N0 � 10 515 (squares). The
line is a fit to (11) resulting in D � 4:7� 0:1.
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characteristic time �0 and the polynomial degree, we need
the characteristic distance between vertices in the graph as
well. The amount of information needed to determine the
distance between vertices is, however, more difficult to
collect, in principle requiring the complete mapping of
the graph. In this respect, the development of realistic
graph models that can accurately represent the real graphs
will be extremely valuable, allowing us to characterize the
distance statistics from the degree statistics.
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