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Three-Dimensional Shear in Granular Flow
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The evolution of granular shear flow is investigated as a function of height in a split-bottom Couette
cell. Using particle tracking, magnetic-resonance imaging, and large-scale simulations, we find a
transition in the nature of the shear as a characteristic height H� is exceeded. Below H� there is a central
stationary core; above H� we observe the onset of additional axial shear associated with torsional failure.
Radial and axial shear profiles are qualitatively different: the radial extent is wide and increases with
height, while the axial width remains narrow and fixed.
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FIG. 1. Surface flow as function of filling height, H.
(a) Angular velocity, !0 at the cell axis. (b) Center of the shear
band, Rc. The solid line is a Gaussian fit to guide the eye; the
dotted line is the fitting function of Fenistein et al. [7]; the
dashed line is the theoretical result [8]. The vertical dash-dotted
line indicates H � 0:6Rs. Inset: Schematic of split-bottom
Couette cell.
Shear bands in dense granular materials are localized
regions of large velocity gradients; they are the antithesis
of the broad uniform flows seen in slowly sheared
Newtonian fluids [1–6]. Until recently it was generally
assumed that all granular shear bands were narrow.
However, in 2003 Fenistein et al. [7] discovered that in
modified Couette cells granular shear bands can be made
arbitrarily broad. In this geometry, the bottom of a cylin-
drical container is split at radius r � Rs and shear is
produced by rotating both the outer ring and the cylindrical
boundary of the container while keeping the central disk
(r < Rs) stationary. For very shallow packs, the shear band
measured at the top surface is narrow and located at r � Rs
so that the inner region directly above the central disk is
stationary while the remaining part rotates as a solid. As
the filling height of the material, H, increases, the shear
band increases in radial width and moves toward the
cylinder axis. For sufficiently large H, the shear band
overlaps the axis at r � 0 and one might expect qualita-
tively new behavior. Indeed, Unger et al. [8] predicted that
the shape of the boundary between moving and stationary
material would undergo a first-order transition as H is
increased past a threshold value H�: the shearing region
which for H <H� is open at the top and intersects the free
surface abruptly collapses to a closed cupola completely
buried inside the bulk.

Previous experiments focused primarily on the surface
flows in shallow containers and left unexplored many
questions about the shape and evolution of the shear pro-
files for large H. Here, we combine magnetic-resonance
imaging (MRI) and high-speed video observations with
large-scale simulations to explore shear flow both for
shallow and tall packs. In addition to monitoring the evo-
lution of the flow profiles in the radial direction, we also
examine shear in the vertical direction. Instead of a first-
order collapse of the shear zone as proposed by Unger et al.
[8], we find that above H� ’ 0:6Rs the inner core of
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immobile material disappears gradually as shear along
the central axis of the cylinder sets in.

Our setup is similar to that of Fenistein et al. [7], except
that we rotate the inner disk instead of the outer ring and
cylinder [Fig. 1(b), inset]. In the absence of inertial effects,
this makes no difference in the results. For surface obser-
vations with high-speed video, we use a cylindrical cell
with radius Rout � 72:25 mm whose bottom is split at
Rs � 55:5 mm. For the MRI experiments a cell with
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Rout � 43:9 mm and Rs � 32:5 mm is used. The inner
disk is rotated at angular velocities, �, in the shear-rate-
independent regime. For the data presented here � � 1:96
and 1:01 rad=s for the surface and MRI experiments, re-
spectively. We fill the cell with granular material to a total
height h � H, measured from the cell bottom. A layer of
grains glued to the cell walls and bottom assures controlled
friction at the boundaries. For the surface flow measure-
ments we used spherical mustard seeds (d � 1:9 mm) and
tracked their motion with high-speed video at frame rates
ranging from 250 to 0:027 s�1. To follow the motion of
particles inside the pack using MRI, we use a mixture of
poppy and rajagara seeds. Rajagara seeds are more spheri-
cal than poppy seeds [Fig. 2(b), inset] but have nearly the
same average diameter (d � 0:85 mm) and the same den-
sity (� � 1:1 g=cm3). Poppy seeds contain more oil than
rajagara seeds, providing a clear contrast in MRI signal
which allows for particle tracking [Fig. 2(a) inset].

The simulations are carried out with a discrete element
method in which grains interact only upon contact through
assumed point forces in normal and tangential directions,
FIG. 2. Angular velocity profiles !�r� at different vertical
positions h for (a) H � 0:4Rs and (b) H � 0:88Rs. Symbols
for MRI experiments: (a) h � 0:21H (�), h � 0:43H (�), and
h � 0:65H (5); (b) h � 0:10H (�), h � 0:21H (�), h �
0:31H (4), h � 0:42H (5), and h � 0:73H (�). Lines for
simulations: (a) (from right to left) h � 0:19H, h � 0:50H,
and h � 0:85H; (b) (from top to bottom) h � 0:11H, h �
0:23H, h � 0:30H, h � 0:43H, and h � 0:70H. Inset of (a):
MRI image for one layer inside the bulk. Bright spots are poppy
seeds, while dark background are rajagara seeds; poppy seeds
glued to the wall of the cell show up as a bright circle. Inset
of (b): Optical micrographs of rajagara (top) and poppy
seeds (bottom).
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and elastic tangential displacements are truncated as nec-
essary to satisfy the Coulomb criteria at the contact. Details
of the specific implementation can be found elsewhere [9].
We use monodisperse Hertzian spheres with a layer of
frozen particles at the bottom. The relevant parameters
describing the material properties of the spheres are the
normal stiffness kn � 2� 105 mg=d, the tangential stiff-
ness kt � 2=7kn, the normal and the tangential viscous
damping coefficients �n � 50

���������
g=d

p
, and �t � 0, and the

particle and wall coefficients of friction � � 0:5, where d
and m are the diameter and mass of spheres and g is the
gravity acceleration. We have checked that changing the
coefficients of friction does not qualitatively change the
observed behavior. The cell dimensions used for the simu-
lation match those used for the surface measurement ex-
periments. We choose � � 0:014

���������
d=g

p
’ 1:39 rad=s.

Evidence for a change in flow behavior with increasing
filling height, H, can already be found by tracking particle
motion at the free top surface (Fig. 1). The angular velocity
at the center of the cell, !0 � !�r � 0; h � H�, is inde-
pendent of H for shallow packs but begins to decrease
beyond H� ’ 0:6Rs. At a similar height, Fenistein et al.
found that the radial shear profile at the surface begins to
deviate from the universal error-function shape describing
the profile for shallow packs [7]. Dramatic deviations are
also seen in the evolution of the center position of the shear
band, Rc�H�, with filling height [Fig. 1(b)]. Our results for
Rc, defined as the radial position where the shear rate has
its maximum, are consistent with previous experiments [7]
as well as with models [8] in the shallow pack regime.
However, while !0 decreases for H >H�, the shear zone
does not disappear at the surface as predicted by the theory
(dashed line). Instead, in both experiments and simulations
Rc asymptotically approaches a nonzero value.

These results imply that, beyond H�, velocity gradients
must also exist in the vertical, axial direction near the
center of the cell. Our MRI experiments and simulations
explore this shear flow inside the bulk. We prepare our
MRI samples by mixing 5% (by volume) poppy seeds
(MRI positive seeds) uniformly with rajagara seeds
[Fig. 2(a), inset]. Images before rotation and after an
interval of rotation are taken. By performing a cross corre-
lation of the two images as a function of radius, we obtain
velocity profiles !�r� as a function of h (Fig. 2). This
method enables us to measure velocities with several or-
ders of magnitude difference (for details, see [10]). For
both experiments and simulations, care was taken to assure
that the systems are in the steady state by rotating long
enough before any measurements were performed. As an
additional check we made sure that stopping and restarting
the system did not change the velocity profile, which is
consistent with the previous study [11].

ForH <H�, MRI and simulations show an inner core at
the center of the pack which rotates as a solid along with
the rotating bottom. We plot the profiles !�r� in Fig. 2(a).
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FIG. 3 (color). Contours of constant angular velocity, !=�, for different filling height H. Upper panels: MRI experiments: !=� �
0:84 (�), 0.24 (�), 2:4� 10�2 (�), 2:4� 10�3 (�), and 2:4� 10�4 (5). Dashed lines indicate H and dotted lines are guides to the
eye. Lower panels: simulations. Color is used to identify velocity ranges: dark red, !=� 2 	0:84; 1
; orange, 	0:24; 0:84
; yellow,
	2:4� 10�2; 0:24
; green, 	2:4� 10�3; 2:4� 10�2
; blue, 	2:4� 10�4; 2:4� 10�3
; white, 	0; 2:4� 10�4
.
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There is no slip between different layers near the center of
the cell, and the profiles are fit well by an error function.
However, when we increase H above H�, axial slip occurs
in both MRI experiments and simulations: the bottom layer
rotates at the same rate as the bottom disk, while the layer
near the surface hardly rotates at all [Fig. 2(b)] [12]. Thus
the decrease in surface flow velocity for H >H� is caused
by shear between horizontal layers inside the bulk. For
H <H�, an inner core exists at the center of the cell which
rotates with the inner disk with @!�r;h�

@h jr�0 � 0; while for

H >H�, @!�r;h�@h jr�0 � 0.
To visualize the resulting shear profiles, we plot cross

sections of the system with contours of constant angular
velocity (Fig. 3). For H well above H�, the high-velocity
contours close into dome shapes [Fig. 3(d)], which gradu-
FIG. 4. Scaled angular velocity 	�!=�� � a
=�1� a� for dif-
ferent heights h=�. Insets show the corresponding unscaled data
from (a) MRI and (b) simulations. The main panel uses the
same symbols as the insets. The solid line is a Gaussian
exp	�h2=�2�2�
 with � � 0:18Rs. Inset (a): H � 0:97Rs (�),
H � 0:88Rs (�), H � 0:78Rs (�), H � 0:74Rs (�), and H �
0:63Rs (�). Inset (b): H � 1:02Rs (�), H � 0:90Rs (�), H �
0:78Rs (4), H � 0:72Rs (5), and H � 0:66Rs (�). Solid lines
are Gaussian fits introduced in the text.
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ally open as H decreases. The contours for smaller veloc-
ities open up earlier and eventually touch the surface
[Figs. 3(b) and 3(c)]. When H <H�, all velocity contours
touch the surface as a solid inner core forms for r < Rs
[Fig. 3(a)]. The lower panel shows the corresponding
simulation results in a color gradient. One can see how
the motion at different h correlates with the motion of the
bottom disk.

Having access to the full shear profiles allows us to
address the question of whether the same length scale
describes the shear in axial and radial directions.
Insets (a) and (b) of Fig. 4 show !�h� measured along
the axis of the cell (r � 0) for different heights H. We note
that the axial velocity decays in an exponential fashion
before the data plateau at a level that extends to the surface.
All MRI and simulation data can be fit consistently to a
Gaussian form, !�h�=� � a� �1� a� exp	�h2=�2�2�
,
where a is an H-dependent offset indicating the angular
FIG. 5. Width of the shear profiles, �, for different filling
heights H. Data show � along both the axial direction in the
bulk (� and � from MRI experiments using different methods
[14]; � from simulations) and the radial direction in the surface
layer (�). The dashed line is � � 0:18Rs. Inset: offset a vs H
from MRI (�, �) and simulations (�). Surface data from Fig. 1
are shown for comparison (4). The solid line indicates expo-
nential behavior.
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velocity at the top surface and � is the axial shear-band
width. The main panel in Fig. 4 demonstrates the consis-
tency of fitting a Gaussian to the axial shear profile, col-
lapsing data from MRI measurements and simulations.
Near H�, the offset, a, approaches unity in an exponential
manner (Fig. 5, inset). Although all data show the same
exponential behavior, the offsets from simulations and
surface measurement with monodisperse spherical grains
are larger than those from the MRI experiments with poppy
and rajagara seeds [12]. Extrapolating each set of data to
!=� � 1 suggests that the onset of axial shear begins at
H� � 0:60� 0:02Rs.

The data in Fig. 5, together with those from Fig. 1(a),
demonstrate that the transition in shearing behavior at H�

occurs in a continuous manner. This differs from the model
by Unger et al. [8], which predicts a first-order transition at
H� � 0:7Rs. While the Unger model, based on the idea of
minimum dissipation of energy, includes the essential ele-
ments for the transition in the shape of the shear band, a
key aspect not considered is the axial slip below H�. The
necessity for such slip emerges from considering the torque
balance in shallow packs. When the torque on the surface
of the inner core exceeds the frictional strength at the
bottom, slip will occur. The total torque on the surface of
the inner core and the torsional strength of the contact
between the bottom of the cell and the granular material
above it can be calculated if the shape of the inner core
hcore�r� is known. Using the approximate hcore�r� given in
[8], it can be shown that this already occurs when H >
0:5Rs. Thus, already within the Unger model a torsional
failure mode near the bottom should preempt any first-
order transition within the bulk. Our data demonstrate that
this torsional failure is associated with a well-defined axial
shear band at r � 0 that exhibits a Gaussian profile.

Gaussian shear profiles have been observed in previous
studies using traditional Couette cells [5]. However, in the
present geometry we find such a profile along the axial
direction and an approximate error-function profile along
the radial direction. The width of this axial shear zone
appears to be independent ofH, with an average value � �
0:18Rs, implying �=d � 6:9 for the experiment and 5.4 for
the simulation (Fig. 5). This is in contrast to the width of
the radial shear profile (Fig. 5), which strongly depends on
H and approaches 0 as H ! 0 [7].

The ubiquitous presence of shear bands is one of the
crucial differences between granular materials and ordi-
nary fluids. Understanding what gives rise to the shear
profiles is one of the outstanding puzzles in granular dy-
namics. The modified Couette geometry produces two
distinct forms of shear: a radial component whose width
grows with height as shown by Fenistein et al. [7], and an
axial component with a small constant width that appears
only when the filling height exceeds a threshold. The
different character of the shear bands in the radial and
axial directions shows that boundary conditions are essen-
03800
tial for determining shear localization. Because the onset
of axial shear in this geometry is continuous and controlled
simply by the height of the pack, these studies have al-
lowed for detailed observation of how shear can be initi-
ated in the bulk. Very recent surface measurement of the
central core procession [13] also corroborates our three-
dimensional results.
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