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Cooper Pairs with Broken Parity and Spin-Rotational Symmetries in d-Wave Superconductors

A. G. Lebed*
Department of Physics, University of Arizona, 1118 E. 4th Street, Tucson, Arizona 85721, USA

(Received 25 July 2005; published 25 January 2006)
0031-9007=
Paramagnetic effects are shown to result in the appearance of a triplet component of order parameter in
a vortex phase of a d-wave superconductor in the absence of impurities. This component, which breaks
parity and spin-rotational symmetries of Cooper pairs, is expected to be of the order of unity in a number
of modern superconductors such as organic, high Tc, and some others. A generic phase diagram of such
type-IV superconductors, which are singlet ones atH � 0 and in the Meissner phase, and characterized by
singlet-triplet mixed Copper pairs �s � i�t with broken symmetries in a vortex phase, is discussed.
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It is well known [1,2] that type-II superconductors,
where superconductivity survives at high magnetic fields
Hc1�T�<H <Hc2�T� as the Abrikosov vortex phase [1–
3], are subdivided into two main classes. They are super-
conducting alloys (or dirty superconductors) [1,2] and
relatively clean materials, where type-II superconductivity
is due to anisotropy of their quasiparticles’ spectra and
relatively heavy masses of quasiparticles [4]. The latter
compounds are currently the most interesting and perspec-
tive superconducting materials, including organic [5],
heavy fermion [6], high Tc [7], MgB2 [8], and some other
superconductors.

Superconducting orbital order parameter ��r1; r2�, cor-
responding to the pairing of two electrons in a Cooper pair,
can usually be expressed as ��r1; r2� � ��R���r� [9,10],
where the external order parameter ��R� is related to the
motion of a center of mass of a Cooper pair,R � �r1 �
r2�=2, whereas the internal order parameter ��r� describes
the relative motion of electrons in the Cooper pair r �
r1 � r2. In this context, type-II superconductors in their
vortex phases are characterized by broken symmetries of
��R�, corresponding to vortices and Meissner currents.
Other important issues are symmetries of the internal
orbital order parameter ��r� and the related spin part of
order parameter ���1; �2�. To satisfy Fermi statistics, in
the case of singlet superconductivity (where the total spin
of a Cooper pair is jSj � 0), the internal order parameter
��r� has to be an even function of coordinate r, whereas, in
the case of triplet superconductivity (where jSj � 1), ��r�
has to be an odd function of r. In accordance with the
symmetry properties of ��r� [or its Fourier component,
�̂�k�], superconductors are subdivided into conventional
ones [1,2] (where superconductivity is described by BCS
s-wave singlet pairing) and unconventional ones [9,10]
[where the symmetry of �̂�k� is lower than the underlying
symmetry of the crystalline lattice]. At present, unconven-
tional d-wave singlet superconductivity is firmly estab-
lished in high Tc [11] and some organic materials. There
exist also several strong candidates for unconventional
triplet superconducting pairing such as Sr2RuO4 [12], or-
ganic superconductors �TMTSF�2X [13], ferromagnetic
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[14], and heavy fermion [9,10,15] superconductors. It
is a common belief that magnetic field does not change
the internal order parameters �̂�k� and ���1; �2� in
conventional [1,2] and unconventional [9,10] type-II
superconductors.

The goal of our Letter is to demonstrate that there must
be type-IV superconductors [16] which exhibit qualita-
tively different magnetic properties. More precisely, we
suggest and prove the following theorem: each singlet
type-II superconductor in the absence of impurities is
actually a type-IV superconductor with broken parity k!
�k and spin-rotational symmetries of internal Cooper pair
wave functions in vortex phase, provided that the effective
constant of triplet pairing is not exactly zero, gt � 0 [17].
We show that the above-mentioned theorem is an inherent
property of singlet superconductivity and is due to careful
accounting for paramagnetic spin-splitting effects in a
vortex phase, which have been treated so far only for gt �
0 [1,2,18].

We define type-IV superconductivity as singlet super-
conductivity at H � 0 and in the Meissner phase, which
exhibits broken symmetries of internal Cooper pair wave
functions �̂�k� and ���1; �2� in vortex phase. In our
particular case, the internal order parameter in the vortex
phase is shown to be a mixture of a singlet d-wave com-
ponent �̂s�k� with a triplet component i�̂t�k�, where
�t�k� is an imaginary part of a complex order parameter
[17]. Below, we demonstrate that the effects of singlet-
triplet coexistence are expected to be of the order of unity
in a number of modern strongly correlated clean type-II
superconductors, where the orbital upper critical fields are
of the order of the paramagnetic limiting fields [1,2,18]
�BHc2�0� � Tc [19] (see Table I). It is important that the
suggested theorem is very general: it is valid even for the
simplest spin independent electron-electron interactions
for both attractive and repulsive interactions in a triplet
channel.

As discussed below, the above-mentioned theorem is
based only on symmetry arguments and is a consequence
of broken symmetry in spin space (due to paramagnetic
effects) and broken translational invariance of ��R� (due
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TABLE I. Upper critical fields Hc2�0� [20–23], transitions
temperatures Tc, and triplet-singlet ratio jRj are listed for
some modern layered d-wave and s-wave superconductors.

�� �ET�2AuI2 �� �ET�2IBr2 YBa2Cu3O7 MgB2

Hc2�0�	T
 5:5�k� 2:4�k� 110�?� 18�k�
�BHc2�0�	K
 3.7 1.6 74 12
Tc	K
 4.3 2.3 85 35
R 0.85 0.7 0.85 0.4
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to the existence of vortices). Therefore, our qualitative
results about singlet-triplet mixed order parameter and
the broken symmetries of Cooper pair internal wave func-
tions are irrespective of a weak coupling model used in the
Letter. We recall that, in the vortex phase, translational
invariance of ��R� is broken and ��R� is a function of R
on a scale of �, where � is a coherence length [1–4].
Therefore, ��R� corresponds to superconducting pairing
of electrons with total nonzero momenta of Cooper pairs of
the order of jqj � @=�. As seen from Fig. 1, a probability of
pairing for electrons with spin-up and spin-down
j���;��j2 is different from that for electrons with spin-
down and spin-up j���;��j2, if q � 0. Therefore, singlet
superconductivity, which is characterized by the spin order
parameter ���;�� � ����;�� has to be mixed with a
triplet component, characterized by spin order parameter
���;�� � ���;�� [9,10] (see Fig. 1). Note that, in such
a triplet component, spin-rotational symmetry is broken
and spins of Cooper pairs are directed perpendicular to an
external magnetic field.
FIG. 1. Paramagnetic effects split electron spectra with spins-
up and spins-down: ���k� � �0�k� ��BH and ���k� � �0�k� �
�BH, correspondingly. Two Cooper pairs with spin parts of
wave functions ���;�� and ���;�� and equal total momenta
q � 0 are characterized by different probabilities to exist, since
the energy difference j��1 � �

�
1 j � qvF � 2�BH is not equal to

the energy difference j��2 � �
�
2 j � �qvF � 2�BH. [For sim-

plicity, the linearized one-dimensional electron spectrum
�0�k� � vFjkj is shown].
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Here, we quantitatively describe superconducting pair-
ing with the internal order parameter, exhibiting broken
inversion and spin-rotational symmetries, in a d-wave
singlet superconductor with layered electron spectrum,

�0�k� � �k2
x � k2

y�=2m� 2t? cos�kzd�; �F � mv2
F=2

(1)

in a parallel magnetic field

H � �0; H; 0�; A � �0; 0;�Hx�: (2)

In this case, where electron-electron interactions do not
depend on electron spins, the total Hamiltonian of electron
system can be written in the form
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where ���k� � �0�k� � ��BH (� � �1), a�� �k�, and
a��k� are electron creation and annihilation operators.
As usual [9,10], electron-electron interactions are subdi-
vided into singlet and triplet ones:

V�k;k1� � Vs�k;k1� � Vt�k;k1�;

Vs�k;k1� � Vs��k;k1� � Vs�k;�k1�;

Vt�k;k1� � �Vt��k;k1� � �Vt�k;�k1�:

(4)

We define the normal and Gorkov (anomalous) finite tem-
perature Green functions,

G�;��k;k1; �� � �hT�a��k; ��a�� �k1; 0�i;

F�;���k;k1; �� � hT�a��k; ��a����k1; 0�i;
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(5)

as well as singlet and triplet superconducting order pa-
rameters,
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(6)

by the standard ways [9,10,24,25].
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The goal of our Letter is to consider the superconducting
nucleus in the vicinity of the phase transition line between
metallic and singlet-triplet mixed superconducting phases
in the Ginzburg-Landau (GL) region, �Tc � T�=Tc � 1
[1–4], where Tc is a transition temperature between the
metallic state and the d-wave singlet phase at H � 0. For
this purpose, we linearize the Gorkov equations [9,10,24]
with respect to order parameters (6) and obtain the follow-
ing system of linear equations [26]:
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; (7)

where G0
��i!n;k� � 1=�i!n � ���k�� is the Green func-

tion of a free electron in the presence of paramagnetic
effects and !n is the Matsubara frequency [25]. [Note
that common Eq. (7) directly demonstrates singlet-triplet
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coexistence effects in the vortex phase since D � 0 at
q � 0. Indeed, Eq. (7) does not have a solution when
�t�k;q� � 0, implying that such a triplet component
must occur (see also Fig. 1)].

Below, we consider in detail an important example, the
coexistence of singlet dx2�y2 -wave [26] and triplet px-wave
order parameters, which correspond to the following ma-
trix elements of electron-electron interactions:

Vs�k;k1�

Vt�k;k1�

 !
� �

4�
vF

gs cos2� cos2�1

gt cos����1�

 !
;

gs > 0; gs > gt;
(8)

where � and �1 are polar angles corresponding to mo-
menta k and k1, respectively. [Note that inequalities gs >
0 and gs > gt guarantee that the singlet dx2�y2-wave phase
is a ground state at H � 0 and T < Tc]. After substitution
of Eq. (8) in Eq. (7), we represent order parameters as
follows, �s�k;q� �

���
2
p

cos2��s�q� and �t�k;q� ����
2
p

cos��t�q�, and rewrite Eq. (7) in a matrix form:
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We calculate matrix Â�q� at qy � 0 in the GL region
[3,4,9,27] which corresponds to its expansion as a power
series in small parameters vFqx=Tc � 1 and t?dqz=Tc �
1. As a result, we obtain
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with � being a cutoff energy. Magnetic field (2) is introduced in Eqs. (9) and (10) by means of a standard quasiclassical
approximation [3,4,27,28], qx ! �i�d=dx�, qz=2! eAz=c � eHx=c which leads to the following matrix GL equations
extended to the case of triplet-singlet coexistence:
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where � � �Tc � T�=Tc � 1, �k �
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[4,9], 	�3� ’ 1:2 is the zeta Riemann function, �0 is a flux
quantum, and x is coordinate of a center of mass of the
Cooper pair. In typical cases, where the singlet supercon-
ducting transition temperature is not close to the triplet one
(gs � gt � gs, gs > gt > 0), or where the effective triplet
coupling constant is repulsive (� gt > 0), Eq. (11) has the
following solutions:
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Eqs. (11) and (12) are the main results of our Letter.
They extend the GL differential equation [1–4,9,10,27]
and its famous Abrikosov solution for the superconducting
nucleus exp���x2=2�2

k
� [1–3] to the case gt � 0. Eqs. (11)

and (12) directly demonstrate that, in a vortex phase,
singlet order parameter always coexists with the triplet
one, characterized by jSj � 1 and Sy � 0 (H k y), for an
arbitrary sign of effective triplet coupling constant gt. Note
that triplet component (12), breaking parity and spin-
rotational symmetries, may also, in principle, beak time-
reversal symmetry due to the existence of nondiagonal
matrix elements, proportional to iH in Eq. (11) [17].

To summarize, the main message of the Letter is that
Cooper pairs cannot be considered as unchanged elemen-
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tary particles in vortex phases of modern strongly corre-
lated strongly type-II superconductors, whereHc2�0� �Hp

[i.e., �BHc2�0� � Tc] and jgsj � jgtj [29]. Indeed the
triplet-singlet components ratio in Eq. (12) at x0 ����

2
p
�k=

���
�
p

, where x0 is a characteristic ‘‘size’’ of the super-
conducting nucleus (12), and �Tc � T�=Tc � Tc (i.e., ��
1) can be estimated as R � �t=�s � i��BHc2�0�=Tc� (see
Table I). Note that the appearance of a triplet component
(12), where Cooper pair spins are perpendicular to an
external magnetic field, has to change all qualitative
features of vortex phases in d-wave superconductors.
These include the unusual topology of superconducting
vortices [30], the appearance of spin-wave-like excitations,
the disappearance of quasiparticles near zeros of the
dx2�y2 -wave superconducting gap, possible unusual spin
susceptibility, phase sensitive effects, and other nontrivial
phenomena to be studied in the future. We suggest that, in
clean type-II superconductors, there exist the fourth critical
fields, Hc4�T�, corresponding to crossovers (or phase tran-
sitions) between Abrikosov vortex phases and exotic vor-
tex phases with broken symmetries; we call such materials
type-IV superconductors. In conclusion, we point out that
singlet-triplet mixing effects were earlier studied in He3

[31], Larkin-Ovchinnikov-Fulde-Ferrell phase [32,33], for
surface superconductivity [34], and in superconductors
without inversion symmetry [9,35,36].
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