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Interlayer Aharonov-Bohm Interference in Tilted Magnetic Fields
in Quasi-One-Dimensional Organic Conductors
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Different types of angular magnetoresistance oscillations in quasi-one-dimensional layered materials,
such as organic conductors �TMTSF�2X, are explained in terms of Aharonov-Bohm interference in
interlayer electron tunneling. A two-parameter pattern of oscillations for generic orientations of a
magnetic field is visualized and compared to the experimental data. Connections with angular magne-
toresistance oscillations in other layered materials are discussed.
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FIG. 1 (color online). (a) Geometry of electron tunneling
between two Q1D layers. The sinusoidal line represents the in-
plane electron trajectory; tb and tc are the amplitudes of inter-
chain tunneling. (b) The Fermi surfaces of the two layers, shifted
by the vector q in Eq. (9). The shaded areas S1 and S2 lead to
interference oscillation in the presence of Bz.
Angular magnetoresistance oscillations (AMRO), where
resistivity oscillates as a function of the magnetic field
orientation, were originally discovered [1,2] in the quasi-
two-dimensional (Q2D) organic conductors of the
�BEDT-TTF�2X family [3]. AMRO are distinct from the
Shubnikov–de Haas and de Haas–van Alphen oscillations
and are now widely used for direct mapping of the Fermi
surfaces of layered materials [4,5]. AMRO have been
observed not only in many organic conductors, but also
in intercalated graphite [6], Sr2RuO4 [7], Tl2Ba2CuO6

[8,9], and GaAs=AlGaAs superlattices [10]. Early theories
of AMRO [4,11,12] were formulated in terms of semiclas-
sical electron trajectories on a cylindrical 3D Fermi sur-
face. Then it was realized that AMRO can exist already for
two layers [13–15], and they represent an Aharonov-Bohm
interference effect in interlayer tunneling [16]. Some ex-
perimental evidence for AMRO in semiconducting bi-
layers has been found [17], but more systematic measure-
ments are necessary.

AMRO were also found in quasi-one-dimensional
(Q1D) organic conductors with open Fermi surfaces,
such as �TMTSF�2X [3]. These materials consist of parallel
chains along the x axis, which form layers with the inter-
layer spacing d along the z axis and the interchain spacing
b along the y axis, as shown in Fig. 1(a). Originally, three
different AMRO were discovered in the Q1D conductors:
the Lebed magic angles [18–21] for a magnetic field ro-
tation in the �y; z� plane; the Danner, Kang, and Chaikin
(DKC) oscillations in the �x; z� plane [22,23]; and the third
angular effect in the �x; y� plane [24–26]. Then Lee and
Naughton [27] found combinations of all three effects for
generic magnetic field rotations. It became clear that all
types of AMRO in Q1D conductors have a common origin
and should be explained by a single unified theory.

In �TMTSF�2X, the in-plane tunneling amplitude be-
tween the chains, tb � 250 K [22,23], is much greater
than the interplane tunneling amplitude tc � 10 K [3].
Thus, we can treat interlayer tunneling as a perturbation
and study the interlayer conductivity �c between just two
layers for a tilted magnetic field B � �Bx; By; Bz�, as
06=96(3)=037001(4)$23.00 03700
shown in Fig. 1(a). This bilayer approach [14,15] only
assumes phase memory of interlayer tunneling within a
decoherence time � and does not require a well-defined
momentum kz and a coherent 3D Fermi surface. It gives a
simple and transparent interpretation of the most general
Lee-Naughton oscillations [27] in terms of Aharonov-
Bohm interference in interlayer tunneling. The results are
equivalent to other approaches based on the classical
Boltzmann equation [25–29] and the quantum Kubo for-
mula [30–32]. We calculate contour plots of �c as a
function of two ratios Bx=Bz and By=Bz for models with
one or several interlayer tunneling amplitudes [30,33].
This type of visualization clearly reveals agreement and
disagreement between theory and experiment and allows
us to determine the electronic parameters of the Q1D
materials. The results can be also applied to Q1D semi-
conducting bilayers consisting of quantum wires induced
by an array parallel gates, as shown in Fig. 1(a).

Let us consider tunneling between two Q1D layers. The
in-plane electron dispersion is

"�kx; ky� � �vFkx � 2tb cos�kyb=@�; (1)

where energy " is measured from the Fermi energy, �vF
are the Fermi velocities on the opposite sheets of the open
Fermi surface, k � �kx; ky� is the in-plane momentum, and
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FIG. 2 (color online). The contour plot of angular oscillations
in the normalized interlayer dc conductivity �c�B; 0�=�c�0; 0�,
Eq. (8). The variables B0x and B0y are defined in Eq. (5). The lines
with circles and squares indicate where interference between the
two trajectories in Fig. 1(b) is constructive and destructive.
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kx is measured from the Fermi momentum. The interlayer
tunneling is described by the Hamiltonian

Ĥ ? � tc
Z
 ̂y2 �r� ̂1�r�ei��r�d2r� H:c:; (2)

��r� �
ed
@c
Az�r�; Az�r� � Bxy� Byx; (3)

where r � �x; y�, c is the speed of light, e is the electron
charge, Az is the vector potential, and  ̂1;2 are the electron
destruction operators in the layers 1 and 2. The gauge phase
��r� is due to the in-plane magnetic field.

We treat the in-plane electron motion quasiclassically.
For Bz � 0, electrons move in time t along sinusoidal
trajectories [34], as shown in Fig. 1(a),

x�t� � x0�vFt; y�t� � y0�

�
2tbc
evFBz

�
cos�!ct�: (4)

Instead of the magnetic field components �Bx; By; Bz�, it is
convenient to introduce the variables !c, B0x, and B0y de-
fined by the following relations

!c �
ebvFBz

@c
; B0x �

Bx
Bz

2tbd
@vF

; B0y �
By
Bz

d
b
: (5)

The cyclotron frequency !c is simply proportional to Bz,
whereas the dimensionless variables B0x and B0y are propor-
tional to the ratios of the magnetic field components
Bx=Bz � cos’ tan� and By=Bz � sin’ tan�. Although
these ratios can be expressed in terms of the spherical
angles � and ’, we believe that presentation and visual-
ization of the results using B0x and B0y is simpler and more
insightful than in the spherical angles [15,25,28].

The gauge phase (3) in Eq. (2) leads to interference
between interlayer tunneling amplitudes tcei��r� along the
trajectory r�t�. In Eq. (4), y�t� oscillates with the period
�t � 2�=!c, whereas x�t� steadily increases, accumulat-
ing the phase �� � edByvF�t=@c over one period. The
average hei��t�it vanishes unless �� � 2�n, where n is an
integer. This condition selects the Lebed magic angles
B0y � n [18], which in the spherical coordinates are sin’ �
n�b=d� cot� [27]. Using Eqs. (3)–(5), we find the effective
interlayer tunneling amplitude ~tc

~t c � tche
i��t�it � tcJn�B

0
x� for B0y � n; (6)

where Jn is the Bessel function.
AMRO result from a periodic modulation of the effec-

tive interlayer coupling ~tc in Eq. (6) due to interlayer
Aharonov-Bohm interference. The condition B0y � n re-
quires that the flux of By through the area, formed by the
interlayer distance d and the electron trajectory period
�x � vF�t, is n�0, where �0 � hc=e is the flux quan-
tum. In addition, ~t2c (6) oscillates as a function of B0x with
the period �B0x � �. These DKC oscillations [22] are
related to the flux of Bx through the area bounded by d
and �y � 4tbc=evFBz, the transverse width of the electron
trajectory in Eq. (4). More precisely, it is necessary to
03700
consider the distance between the turning points of an
electron trajectory, as viewed along the vector �Bx; By�.
This will be discussed in more detail from the momentum-
space point of view.

The interlayer ac conductivity �c�!� is given by a
correlator of tunneling events at times t and t0 [14,15]

�c�!� /Ret2ch
Z 1
t
ei��t

0��i��t�e�t
0�t��i!�1=��dt0it; (7)

where � is a relaxation time. Substituting Eqs. (3) and (4) in
Eq. (7), we find

�c�B; !�
�c�0; 0�

�
X1

n��1

J2
n�B

0
x�

1� �!c��2�n� B0y �!=!c�
2 ; (8)

where �c�0; 0� is the dc conductivity at B � 0, and the
signs � in the denominator originate from the �vF sheets
of the Fermi surface. Equation (8) is in agreement with
Refs. [12,14,15,30,31]. It can be applied to the microwave
measurements at ! � 0 [35,36], but below we concentrate
on the dc case ! � 0. When !c�! 1, only the term with
n � B0y survives, and Eq. (8) reduces to �c�B; 0�=
�c�0; 0� � �~tc=tc�

2 with ~tc from Eq. (6). In Fig. 2, we
show the contour plot of �c�B; 0�=�c�0; 0� vs B0x and B0y
calculated from Eq. (8) for !c� �

������
50
p

	 7:1. The dc
conductivity �c is maximal at the vertical stripes, labeled
by the integer numbers n, which correspond to the Lebed
magic angles B0y � n. Within the nth vertical stripe, �c has
alternating maxima and minima, indicated by circles and
squares, which represent oscillations of J2

n vs B0x in Eqs. (6)
and (8). Positions of these maxima and minima can be
obtained from the Aharonov-Bohm interference in mo-
mentum space, as described below.

Eqs. (2) and (3) show that, in the process of interlayer
tunneling, the in-plane electron momentum changes by

q � �qx; qy� � �ed=c��By;�Bx�: (9)

Thus, the Fermi surfaces of the two layers are displaced
relative to each other by the vector q [14,15], as shown in
1-2
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FIG. 3 (color online). Contour plot of the normalized inter-
layer dc conductivity �c�B; 0�=�c�0; 0� vs B0x and B0y calculated
from Eq. (12). Compared with Fig. 2, this plot takes into account
additional tunneling amplitudes tm along d�mb: t�1 � tc=2
and t�2 � tc=4, which produce the Lebed oscillations at Bx � 0.
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Fig. 1(b). Electrons can tunnel between the layers only at
the intersection points k1, k2, k3, etc., of the two Fermi
surfaces, where the conservation laws of energy and mo-
mentum are satisfied. In the presence of Bz, there is a phase
difference between the two trajectories connecting the
intersection points, which is proportional to the shaded
momentum-space area S1 > 0 or S2 < 0 in Fig. 1(b). The
algebraic sum S1 � S2 � qx�2�@=b� depends only on
qx � �ed=c�By. Constructive interference between k1 and
k3 requires that �S1 � S2�c=@eBz � 2�n, which is equiva-
lent to the Lebed condition B0y � n.

Interference between k1 and k2 is controlled by the area
S1. Introducing the dimensionless variable S01 �
S1c=@eBz, we find from Fig. 1(b) that

S01 � 2B0x

����������������������
1�

�B0y
B0x

�
2

s
� B0y

�
�� 2 arcsin

�B0y
B0x

��
: (10)

Constructive interference requires that S01 � 2��j� 1=4�,
where j is an integer, and the extra phase �=2 appears
because k1 and k2 are the turning points on the Fermi
surface, when viewed along the vector q. The lines with
circles show where in Fig. 2 this condition is satisfied.
Maxima of �c are achieved at the circled intersections of
these lines and the integer vertical lines, where both S1 and
S1 � S2 give constructive interference. These points cor-
respond to the maxima of the Bessel functions in Eq. (8).
The lines with squares in Fig. 2 show where the interfer-
ence in S1 is destructive (j is half-integer). At the inter-
sections of these lines and the integer vertical lines, marked
by squares, �c has minima, and the Bessel functions in
Eq. (8) have zeros. There, �c ! 0 at !c�! 1, and re-
sistivity �c � 1=�c increases without saturation when
B! 1, whereas �c�B� saturates at the circles [32]. The
maxima and minima of�c create a checkerboard pattern of
oscillations [31] for jB0xj> jB0yj in Fig. 2.

The diagonal line B0x � B0y in Fig. 2 corresponds to the
third angular effect [24–26]. At this line, the points k2 and
k3 merge, and the area S2 shrinks to zero in Fig. 1(b). For
jB0xj< jB0yj, the two Fermi surfaces do not cross in
Fig. 1(b), so interlayer tunneling is suppressed, and �c
does not show oscillations below the diagonal lines in
Fig. 2. However, this contradicts experiments [37,38],
which show the Lebed oscillations of �c vs B0y at Bx � 0.

To improve the theory, let us consider a model with
interlayer tunneling amplitudes tm between the chains
shifted by m units in the y direction [30]. The tunneling
displacement is d�mb, so the phase in Eq. (2) becomes

��r� �
e
@c
�Azd� Aymb�; Ay � Bzx: (11)

Comparing Eqs. (3) and (11), we see that results in this
case can be obtained by substitution Byd! Byd� Bzmb
and B0y ! B0y �m in the old results. Equation (6) trans-
forms into ~tm � tmJn�m�B

0
x� for B0y � n, and Eq. (8) be-

comes
03700
�c�B;!�
�c�0;0�

�
X
m

X1
n��1

t02mJ
2
n�m�B

0
x�

1��!c��
2�n�B0y�!=!c�

2 ; (12)

where t02m � t2m=
P
lt

2
l . The contour plot of Eq. (12) can be

obtained by shifting the plot in Fig. 2 by m units along the
B0y axis and adding the shifted plots with the weights t02m.
The resulting contour plot, calculated for t0 � tc, t�1 �
tc=2, and t�2 � tc=4, is shown in Fig. 3. At Bx � 0,�c�B0y�
has maxima for those directions B0y � m where tm exists
[30,33]. Oscillations of �c vs B0x are smeared in Fig. 3,
because the shifted maxima and minima of the checker-
board pattern in Fig. 2 add up out of phase. This is
illustrated in Fig. 4, which shows that the DKC oscillations
of �c�B0x� for By � 0 are much weaker for multiple tm.
Moreover, �c does not have zeros at B0y � n. Thus, when
B! 1, �c�B� saturates on the integer lines in Fig. 3, but
grows without saturation between the lines. Weak DKC
oscillations of �c�B0x� at By � 0 and strong Lebed oscil-
lations of �c�B0y� at Bx � 0 correspond qualitatively to
�TMTSF�2PF6 [23,37,38], indicating that several tm are
present. The opposite case, strong DKC and weak Lebed
oscillations, is found in �TMTSF�2ClO4 [19,20,22], sug-
gesting that it has only one dominant t0 � tc [36]. The
model parameters can be determined by quantitative com-
parison between the calculated plots and experimental data
for �c�B0x; B0y�. Figure 3 shows that the strength of the
Lebed oscillations in �c vs B0y increases when B0x � 0, in
agreement with the Lee-Naughton experiment [27].

The amplitudes tm do not necessarily represent electron
overlap between distant chains. They may be effective
parameters in a model [39], where "�kx� has curvature,
so vF depends on kx and varies along the quasiclassical
trajectory (4). The resulting expression for �c has a form
similar to Eq. (12) with some effective parameters tm,
which themselves may depend on B [39].

While Eq. (12) may well describe the oscillatory part of
�c, it often fails to describe the background, particularly in
1-3
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FIG. 4 (color online). Comparison between the normalized
interlayer dc conductivities �c�B; 0�=�c�0; o� calculated from
Eq. (8) (dashed line) and Eq. (12) (solid line) and plotted vs B0x
for By � 0. The DKC oscillations are reduced in the latter case,
because of the additional tunneling amplitudes tm.
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�TMTSF�2PF6 [23,33,37,38], although there are variations
with pressure and sample [40]. This remains one of the
open problems, along with unusual temperature depen-
dence of resistivity [37] and mysterious angular oscilla-
tions of the Nernst effect [41].

We presented a unified geometrical explanation of dif-
ferent types of AMRO in Q1D conductors in terms of
Aharonov-Bohm interference in interlayer electron tunnel-
ing. We visualized a two-parameter pattern of oscillations
for generic magnetic field orientations using the natural
variables B0x and B0y. Quantitative comparison with experi-
mental data plotted in this way is needed.

This work was supported by the NSF Grant No. DMR-
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