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Disorder Induced Localized States in Graphene
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We consider the electronic structure near vacancies in the half-filled honeycomb lattice. It is shown that
vacancies induce the formation of localized states. When particle-hole symmetry is broken, localized
states become resonances close to the Fermi level. We also study the problem of a finite density of
vacancies, obtaining the electronic density of states, and discussing the issue of electronic localization in
these systems. Our results also have relevance for the problem of disorder in d-wave superconductors.
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Introduction.—The problem of disorder in systems with
Dirac fermions has been studied extensively in the last
few years in the context of dirty d-wave superconductors
[1]. Dirac fermions are also the elementary excitations of
the honeycomb lattice at half-filling, equally known as
graphene, which is realized in two-dimensional (2D) car-
bon based materials with sp2 bonding. It is well-known
that disorder is ubiquitous in graphene and graphite (which
is produced by stacking graphene sheets) and its effect on
the electronic structure has been studied extensively [2–
13]. It has been shown recently [14] that the interplay of
disorder and electron-electron interactions is fundamental
for the understanding of recent experiments in graphene
devices [15]. Furthermore, experiments reveal that ferro-
magnetism is generated in heavily disordered graphite
samples [16–20], but the understanding of the interplay
of strong disorder and electron-electron interactions in
these systems is still in its infancy. Different mechanisms
for ferromagnetism in graphite have been proposed and
they are either based on the nucleation of ferromagnetism
around extended defects such as edges [2,8,12,13] or due to
exchange interactions originating from unscreened
Coulomb interactions [21]. Therefore, the understanding
of the nature of the electronic states in Dirac fermion
systems with strong disorder is of the utmost interest.

In the following, we analyze in detail states near the
Fermi energy induced by vacancies in a tight-binding
model for the electronic states of graphene planes. We
show that single vacancies in a graphene plane generate
localized states which are sensitive to the presence of
particle-hole symmetry breaking. Moreover, a finite den-
sity of such defects leads to strong changes in the local and
averaged electronic density of states (DOS) with the crea-
tion of localized states at the Dirac point.

The model.—We consider a single band model described
by the Hamiltonian:

H � �t
X
hi;ji

cyi cj � t
0
X
hhi;jii

cyi cj � H:c:; (1)
06=96(3)=036801(4)$23.00 03680
where cj �c
y
j � annihilates (creates) an electron at site Rj of

the honeycomb lattice (the spin quantum numbers are
suppressed since we do not consider spin dependent
phenomena). In (1) t is the nearest neighbor hopping
energy (t � 2:7 eV in graphene) and t0 is the next-nearest
neighbor hopping energy. In the honeycomb lattice, while
t describes the hopping of electrons between the two
sublattices, t0 describes the hopping in the same sublattice
and therefore breaks particle-hole symmetry. The rele-
vance of t0 for graphene is suggested by different experi-
ments (t0 � 0:2t) [14].

Localized states around vacancies.—First we consider
the particle-hole symmetric case (t0 � 0), and use the
geometry shown in Fig. 1. We analyze a cluster with
periodic boundary conditions along the vertical direction,
like a zigzag nanotube. In the absence of vacancies, the
Hamiltonian can be simplified using the translational sym-
metry along the vertical direction. The states can be clas-
sified by the momentum (in units of 1=a, with a the lattice
constant) along the vertical axis, km � �2�m�=N, m �
1; . . . ; N where N is the number of unit cells along the
vertical axis. The system is metallic if N � 3M, where M
is an integer. Using this set of momenta, the wave function
amplitudes in each sublattice (A;B) can be written as al;j �P
kmal;kme

ikmj and bl;j �
P
kmbl;kme

ikmj, where �l; j� are the
unit cell coordinates in the geometry of Fig. 1. Upon this
transformation, the original problem is mapped, for each
value of km, into a one-dimensional (1D) tight-binding
model along the horizontal direction, with two sites per
unit cell. Such a 1D problem is characterized by site
amplitudes al � al;km and bl � bl;km , and by two effective
hoppings, t and t�1� eikm�; a gauge transformation allows
us to make them both real, reading t and 2t cos�km=2�.

For the solution of the impurity problem, it is convenient
to define two planes contiguous to the vacancy, as shown
in Fig. 1. The two planes belong to the same sublat-
tice, opposite to the one where the vacancy resides. A
possible localized state at zero energy must: (i) decay as
one moves along the horizontal axis away from these
1-1 © 2006 The American Physical Society
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FIG. 1 (color online). Sketch of the geometry considered in the
text for the study of a single B-site vacancy ( � ). The system has
periodic boundary conditions along the vertical axis, and is
infinite along the horizontal axis. Only some A-site amplitudes
are shown.
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planes, (ii) satisfy the bulk tight-binding equations arising
from the eigenvalue condition Hj�i � Ej�i � 0 at these
axes and beyond, and (iii) have amplitudes a�L�0;j and a�R�0;j

which satisfy the equations

a�L�0;j � �a
�R�
0;j � a

�R�
0;j�1 (2)

for all j, except at the vacancy (j � 0). Having b�L;R�l;j � 0

everywhere automatically satisfies condition (ii). Plane L
at the left of the vacancy can be considered a zigzag edge.
To its left, one can define states which decay exponentially
for momenta such that 2�=3 � km � 4�=3 [5,6]. The
associated wave functions decay as j2 cos�km=2�jl. As
defined in Fig. 1, l is always positive, since it grows
away from both the L and the R planes, and can be
interpreted as the distance to plane L divided by 3a=2.
Analogously, one can define localized wave functions to
the right of plane R, for momenta such that 0 � km �
2�=3 or 4�=3 � km � 2�. These wave functions decay
as j2 cos�km=2�j�l. The amplitudes a�L�0;j and a�R�0;j at planes L
and R can be written, in terms of momentum eigenstates, as

a�L�0;j �
X
km

a�L�km e
ikmj; a�R�0;j �

X
km0

a�R�km0e
ikm0 j; (3)

and if there were no impurity present in the system, we
would have km and km0 in the range 	0; 2�	. The boundary
condition introduced by Eq. (2) can be written asX

km

a�L�km e
ikmj � �

X
km0

�1� eikm0 �a�R�km0e
ikm0 j; (4)

for j � 0. These equations admit the solution:
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a�L�km � 1; a�R�km0 �1� e
ikm0 � � 1; (5)

where the wave vectors km and km0 satisfy 2�=3 � km �
4�=3 and 0 � km0 � 2�=3 or 4�=3 � km0 � 2�. We note
that these momentum values are the same defining the
decaying states to the left and to the right of planes L
and R, respectively, if we had considered the two cases as
separate problems. Hence, we can use the amplitudes we
found in the latter case (given above) when constructing
the wave function for an impurity. To the left of plane
L, the amplitude a�L�l;j is now given as a�L�l;j �P
km	�2 cos�k=2�
l exp	ikm�j� l=2�
, where the values of

km are those imposed by the boundary condition, and a
similar expression for a�R�l;j . For sufficiently wide nanotubes
(corresponding to the solution for the infinite lattice) we
can approximate the sums in km by integrals. Shifting from
lattice position coordinates to distances relative to the L
plane, the amplitude a�L�l;j gives the wave function ��x �

l3a=2; y � a
���
3
p
�j� l=2�� at a point of coordinates �x; y�.

In units of the lattice constant, ��x; y� is approximately

��L��x; y� �
Z 4�=3

2�=3
dk�� 2 cos�k=2��2x=3eiky=

��
3
p

�
e�4�iy�=�3

��
3
p
�

x� iy
�
e2�i�x�y=

��
3
p
�=3

x� iy
; (6)

when the lattice site �x; y� is in the opposite sublattice of
the vacancy, and ��x; y� � 0 when �x; y� is in the same
sublattice as the vacancy. It is now clear that extra vacan-
cies added to the sublattice where the impurity resides
cannot change this wave function.

We would like to understand these results, from the point
of view of a low-energy effective theory. The eigenstates of
the discrete Hamiltonian (1) can be approximated, at long
wavelengths, by the Dirac equation. The wave functions
can be written as a spinor:

��x; y� �  a;b1 �x; y�
 a;b2 �x; y�

 !
(7)

where the functions  1�x; y� and  2�x; y� correspond to the
amplitudes of the wave functions in each of the two sub-
lattices. There are two sets of spinors, a; b, which corre-
spond to the two inequivalent states at the corners of the
Brillouin zone. At zero energy, the functions at one of the
Dirac points satisfy: @z a1�z; �z� � 0; @�z a2 �z; �z� � 0, where
z � x� iy and �z � x� iy, and those at the other Dirac
point can be obtained by replacing z by �z everywhere. The
result of Eq. (6) implies that the boundary conditions at the
vacancy are such that the combination

��x; y� �
 a1 �z� �  

b
1 ��z�

0

� �
/

1
z�

1
�z

0

� �
(8)

is selected [notice that, in the long wavelength limit, the
phase factors in Eq. (6) are factored out upon defining the
slowly varying Dirac fields]. This solution, although de-
1-2
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caying away from the impurity, is not normalizable. It has
the same spatial dependence as the quasilocalized solutions
which are induced by radial potentials on 2D Dirac fermi-
ons [22]. The matching of localized states described above
cannot be generalized to the case t0 � 0, as the band of
edge states is not degenerate in energy [23]. The localized
state at the Fermi level becomes a resonance inside the
continuum of extended states. Numerical results for the
local (DOS) at a site near a single vacancy are shown in
Fig. 2(a). In the absence of electron-hole symmetry, the
localized state becomes a resonance with increasing width,
shifted from the Fermi energy.

The scheme used here can be generalized to study other
lattice representations of the Dirac equation with electron-
hole symmetry. The electronic structure near impurities in
d-wave superconductors has been studied using the
Hamiltonian [24–26]:

H BCS � t
X
hi;ji

cyi cj���cyi;jc
y
i
a;j� c

y
i;jc
y
i:j
b��H:c:; (9)

where the sites are defined in a square lattice, a and b are
the lattice vectors along the horizontal and vertical direc-
tions. The Hamiltonian (9) is formally identical to a tight-
binding model on a square lattice and two orbitals per site.
The hopping terms between different orbitals have differ-
ent signs along the horizontal and vertical axis. If periodic
boundary conditions are applied along the (1,1) and �1;�1�
directions, the problem can be written as the matching of a
set of 1D wave functions, in a way similar to the scheme
depicted in Fig. 1. A vacancy leads to a quasilocalized
state, described by the same long wavelength wave func-
tion (see also Ref. [27]). The quasilocalized state described
here, being localized in a single sublattice, remains a
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FIG. 2 (color online). (a) Comparison between the local DOS
in the vicinity of a vacancy (blue/solid) with the bulk DOS (red/
dashed) in clean systems. (b) Total DOS in the vicinity of the
Dirac points for clusters with 4� 106 sites, at selected vacancy
concentrations. Numerical results in (a), (b) obtained for t0 � 0
(top panels), t0 � 0:1t (center) and t0 � 0:2t (bottom). [Notice
the scale truncation in the upper part of the first panel in (a)].
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solution when there are two vacancies in different sublat-
tices, in agreement with numerical calculations [28].

Finite densities of vacancies.—We have extended the
previous results to systems with a finite density of vacan-
cies, using the stochastic recursion method to obtain the
DOS in clusters with up to�106 sites. Results for different
impurity concentrations and different values of t0 are
shown in Fig. 2(b). In the presence of electron-hole sym-
metry (t0 � 0), the inclusion of vacancies brings an in-
crease of spectral weight to the surroundings of the Dirac
point, leading to a DOS whose behavior for E � 0 mostly
resembles the results obtained within a coherent potential
approximation (CPA) [14]. The most important feature,
however, is the emergence of a sharp peak at the Fermi
level, superimposed upon the flat portion of the DOS (apart
from the peak, the DOS flattens out in this neighborhood as
x is increased past the 5% shown here). The breaking of the
particle-hole symmetry by a finite t0 results in the broad-
ening of the peak at the Fermi energy, and the displacement
of its position by an amount of the order of t0. All these
effects take place close to the Fermi energy. At higher
energies, the only deviations from the DOS of a clean
system are the softening of the van Hove singulari-
ties and the development of Lifshitz tails (not shown) at
the band edge, both induced by the increasing disorder
caused by the random dilution. The onset of this high
energy regime, where the profile of the DOS is essentially
unperturbed by the presence of vacancies, is determined
by � � vF=l, l� n

�1=2
imp being the average distance between

impurities.
To address the degree of localization for the states near

the Fermi level, the inverse participation ratio (IPR) was
calculated via exact diagonalization on smaller systems.
For an eigenstate m, the IPR is the quantity defined as
Pm �

PN
i j�m�i�j

4, the index i labeling the lattice sites.
The wave function of an extended state has an amplitude
equally significant throughout the entire system (�m�i� �
N�1=2), whence we naturally expect Pm � N

�1. For a
localized state, in opposition, its very definition entails
the fact that only a finite number of lattice sites will
contribute to the normalization, resulting in much higher
values of Pm. Results for different values of t0 are shown in
Fig. 3 for random dilution at 0.5%. One observes, first, that
Pm � 3=N for all energies but the Fermi level neighbor-
hood, as expected for states extended up to the length scale
of the system sizes used in the numerics. Secondly, the IPR
becomes significant exactly in the same energy range
where the DOS exhibits the vacancy-induced anomalies
discussed above. Clearly, the farther the system is driven
from the particle-hole symmetric case, the weaker the
localization effect, as illustrated by the results obtained
with t0 � 0:2t. It is worth mentioning that the magnitude of
the strongest peaks in Pm at t0 � 0 and t0 � 0:1t is equal to
the magnitude of the IPR calculated for a single impurity
problem [29]. Such results indicate the existence of quasi-
localized states at the center of the resonance, induced by
1-3
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FIG. 3 (color online). Inverse participation ratio for a concen-
tration of vacancies of 0.5% in systems with 104 sites. The
dashed curve is the total DOS for the same dilution. Top: t0 �
0; center: t0 � 0:1t; bottom: t0 � 0:2t. Only the low-energy
region is shown.
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the presence of the vacancies. For higher doping strengths,
the enhancement of Pm is weaker in the regions where the
DOS becomes flat, in agreement with the reasonably good
description obtained with the CPA.

Conclusions.—We have studied the local DOS near
vacancies in graphene planes. The global and local DOS
are valuable tools in the connection between a microscopic
theory and the interpretation of local spectroscopic experi-
ments, of which recent scanning tunneling spectroscopy
measurements are an example [20]. In agreement with
general arguments valid for the 2D Dirac equation, we
find quasilocalized states at the Fermi level, if the clean
electronic structure shows electron-hole symmetry. In the
absence of electron-hole symmetry, these states are shifted
and broadened. In a system with a finite concentration of
impurities, we find a sharp peak built up from localized
states, superimposed on a structureless finite DOS, also
induced by the vacancies. We have not considered here
additional potentials or local atomic displacements which
can take place near vacancies. Our findings indicate that
the main features in the electronic structure are extended
over many lattice sites around the impurity. Thus, we
expect that they will be weakly affected by local modifi-
cations of the potential near the position of the vacancy.
Finally, we have not discussed the implications of our
results for the magnetic properties of graphene planes.
03680
An enhancement of the density of states over distances
which are large compared to the lattice spacing implies that
vacancies may lead to the formation of extended magnetic
moments, enhancing the tendency of the system towards
ferromagnetism or antiferromagnetism.
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