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Saturated Ferromagnetism from Statistical Transmutation in Two Dimensions
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The total spin of the ground state is calculated in the U ! 1 Hubbard model with uniform magnetic
flux perpendicular to a square lattice, in the absence of Zeeman coupling. It is found that the saturated
ferromagnetism emerges in a rather wide region in the space of the flux density � and the electron density
ne. In particular, the saturated ferromagnetism at � � ne is induced by the formation of a spin-1=2 boson,
which is a composite of an electron and the unit flux quantum.
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Ferromagnetism remains a challenging problem in spite
of being among the best known phenomena in condensed
matter physics. In particular, the origin of ferromagnetism
in electron systems is fundamentally quantum mechanical
and nonperturbative [1]. There are rather few established
mechanisms of ferromagnetism, especially those of the
saturated (complete) ferromagnetism. Saturated ferromag-
netism is defined as the ground state of the many-electron
system with spin-independent interaction having the maxi-
mum possible total spin.

Nagaoka’s theorem is one of few rigorous results on the
saturated ferromagnetism [2]. It guarantees that the
saturated-ferromagnetic state is the unique ground state
when a single hole is inserted in the half-filled Hubbard
model with infinite on-site repulsion U. Unfortunately, this
theorem is limited to the single-hole case. Numerical stud-
ies suggest that Nagaoka ferromagnetism is unstable in the
thermodynamic limit at finite hole densities [3].

The flat-band ferromagnetism is another rigorous result
[4,5]. Namely, the saturated ferromagnetism is proved
rigorously under certain conditions, in electron systems
with a (nearly) flat dispersion in the lowest band for a
single electron. The ferromagnetism in a system with the
low electron density and singular density of states near the
Fermi level [6] may also be related to the flat-band mecha-
nism. However, as these results still have limited applica-
bility, it is worth pursuing other mechanisms of (saturated)
ferromagnetism.

The difficulty in realizing the ferromagnetism in many-
electron systems may be attributed to the Pauli principle
for electrons. In the absence of interaction, the ground state
of the system is generally paramagnetic, because the lower
energy bands are filled with up and down spins. If we
consider a system of bosons rather than fermions, the
intrinsic tendency to favor paramagnetism may be absent.
In fact, it was proved that, in a continuous system with
spinful bosons, one of the ground states is always fully
polarized if explicit spin-dependent interactions are absent
[7,8]. This statement holds also in a lattice model [8,9]. In
particular, for the infinite-U Hubbard model with spin-1=2
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bosons, the total spin of the ground state is shown to be
maximal for all hole densities, unlike in the electronic
Hubbard model [9].

Thus, the saturated ferromagnetism could emerge in an
electron system if the statistics of the electron is trans-
muted to bosonic. In fact, the statistical transmutation
is indeed possible in two-dimensional (2D) systems
[10,11], and it has been applied to fractional quantum
Hall effect [12].

Combining these ideas, we can expect that the 2D
electron system in the presence of an external gauge (mag-
netic) field exhibits the (saturated) ferromagnetism thanks
to the formation of the composite boson. Namely, when the
applied magnetic field amounts to unit flux quantum per
electron, the magnetic-flux quantum may be assigned to an
electron. The composite particle consisting of an electron
and the attached flux is then expected to have spin 1=2 and
to obey the Bose statistics with hard-core constraint. In this
way, in the mean-field level, the original system can be
mapped into a spin-1=2 boson system without magnetic
field, which exhibits the saturated ferromagnetism [7–9].
However, as the ‘‘flux attachment’’ argument is not rigor-
ous, whether this mechanism actually leads to the ferro-
magnetism in an electron system has to be checked.

In quantum Hall systems in the continuum, the fully
spin-polarized ground state is favored for the filling factor
� � 1 (and, in general, for � � 1=m with m odd), without
the Zeeman energy [13–15]. This is referred to as quantum
Hall ferromagnets [16]. While this ferromagnetism is usu-
ally associated with the antisymmetric nature of the orbital
part of the wave function, it could also be regarded as a
consequence of the formation of a spin-1=2 boson which is
composed of an electron and m flux quanta [16]. On the
other hand, the dispersion in quantum Hall systems in the
continuous space is completely flat (Landau levels). Thus
the saturated ferromagnetism may also be understood as a
special case of the flat-band ferromagnetism [17]. It is not
clear whether the statistical transmutation is essential to
realize the saturated ferromagnetism in quantum Hall
systems.
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FIG. 1 (color). Total spin of the ground state as functions of the electron density (ne) and the flux per plaquette (�) in the 2D U ! 1
Hubbard model. Solid lines are straight lines with � � ne and � � 1� ne, where statistical transmutation is expected.
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FIG. 2 (color). Spectral functions D� in the 2D U ! 1
Hubbard model. (a) ne � 4=20 with various values of �;
(b) ne � 18=20 with � � 18=20. The delta functions (vertical
bars) are broadened by a Lorentzian with a width of 0:1t. The
chemical potential is located at the zero energy. Cases with [F]
exhibit saturated ferromagnetism. Colored regions represent D�,
while the dashed curves show D�.

PRL 96, 036406 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
27 JANUARY 2006
In order to clarify this issue, in this Letter we study an
electron system on a lattice. We demonstrate an example of
saturated ferromagnetism which is due entirely to statisti-
cal transmutation and is distinct from the flat-band variety.

Let us introduce the U ! 1 Hubbard model on a square
lattice, with the gauge (magnetic) flux � per plaquette
[18]:

H � �
X
hiji�

�tij��ij�c
y
i�cj� � H:c:� �U

X
i

ni"ni#;

tij��ij� � t exp�i2��ij=�0�;

� �
X

oriented plaquette

�ij; �0 � h=e � 1;

(1)

where hiji refers to the nearest-neighbor pairs. Periodic
boundary conditions are imposed in both directions, unless
explicitly mentioned otherwise. In the U ! 1 limit, we
have

H � �
X
hiji�

�tij��ij�~c
y
i�~cj� � H:c:�; (2)

where ~ci� � ci��1� ni;���, which means that double oc-
cupancy at each site is excluded. We stress that in our
model (2) we have not included the Zeeman coupling of
spins to the magnetic field. The model is therefore com-
pletely isotropic in the spin space, and the total spin is a
conserved quantum number.

Exact numerical diagonalization for 4	 4,
������
18
p

	
������
18
p

,
and

������
20
p

	
������
20
p

clusters is employed in our study. We
study the system with various values of the electron density
ne and the flux per plaquette �. In particular, we need to
investigate the case � � ne where the statistical transmu-
tation to boson would occur. Under periodic boundary
conditions, the total flux of the system is quantized to an
integer. Thus � can take only integral multiples of 1=N,
where N is the number of sites (plaquettes). In order to
study all the possible values of�, we need to use the string
gauge [19]: Choosing a plaquette S as a starting one, we
drawN � 1 outgoing arrows (strings) from the plaquette S,
so that each plaquette other than S is the endpoint of a
03640
string. Then we set�ij on a link ij to�N ij taking account
of the orientation, where N ij is the number of strings
cutting the link ij. We have checked that the single-
electron spectrum for a small system size (N 
 20) in the
string gauge approximately reproduces the Hofstadter but-
terfly in the thermodynamic limit [20].

The total spin Stot at zero temperature can be evaluated
from the expectation value of �Stot�

2 � �
P
‘S‘�

2 in the
ground state, where S‘ is the spin operator at site ‘. In
Fig. 1 we show the scaled total spin Stot=Smax in the �-ne
plane. Here Smax is given by Ne=2 with Ne being the
number of electrons. Red regions correspond to
saturated-ferromagnetic states. In addition to Nagaoka fer-
romagnetism in the single-hole case with � � 0, we find
two common features irrespective of the system size:
(i) Saturated ferromagnetism appears along a straight line
with � � ne (or � � 1� ne) except 0:6 & ne & 0:7.
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FIG. 3. Order parameter of spin-1=2 bosons in the 2D U ! 1
Hubbard model. (a) ne�� �� dependence; (b) � dependence for
ne � 6=20; (c) � dependence for ne � 16=20. In (b) and (c),
data are not plotted where the initial and/or final states in Eq. (5)
have degeneracy.
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(ii) Saturated ferromagnetism appears in the triangular
region surrounded by three straight lines: ne � 0, � �
ne, and � � 1� ne.

Result (i) confirms the expectation based on the statis-
tical transmutation. Moreover, we find that, in most cases
of � � ne, the saturated ferromagnetism is robust against
twisting the boundary condition. This is in contrast to
Nagaoka ferromagnetism, where the total spin of the
ground state is changed from maximum to zero as the
boundary is twisted [21]. Besides, we have checked for
N � 16 and 18 that the saturated-ferromagnetic ground
state at � � ne is nondegenerate except for the trivial
(2Smax � 1)-fold degeneracy. This is consistent with the
ferromagnetism for spin-1=2 bosons [8,9].

In order to distinguish the ferromagnetism due to the
statistical transmutation from possible ‘‘flat-band’’ vari-
eties, we define the spectral functions

D��!� �
1

N

X
‘;n

jh�n�N" � 1; N#;��jc‘"j�0�N"; N#;��ij
2

	 ��!� En�N" � 1; N#;��

� E0�N"; N#;�� ���; (3)

D��!� �
1

N

X
‘;n

jh�n�N" � 1; N#;��jc
y
‘"j�0�N"; N#;��ij2

	 ��!� En�N" � 1; N#;��

� E0�N"; N#;�� ���: (4)

Here � is the chemical potential and j�n�N"; N#;��i de-
notes an eigenstate with energy En�N"; N#;�� in the system
with N" up spins, N# down spins, and the flux �. We define
the index n so that n � 0 corresponds to the ground state
with the given N" and N#. In the following, we set N" �
N# � Ne=2 for Ne even. D� can be estimated numerically
by the continued-fraction method [22]. Below, we show the
results for two values of ne; ne � 4=20 and ne � 18=20 as
representatives of the ‘‘low electron density’’ and ‘‘high
electron density’’ regimes, respectively.

First let us focus on the low electron density case, ne �
4=20. Figure 2(a) shows the evolution of D��!� with
varying �. The sum of D� and D� corresponds to the
density of states (either occupied or unoccupied).
Apparently it is always spread over a similar range of
energy, representing the ‘‘bandwidth’’ which is about 8t
although there is some � dependence.

On the other hand, at this density, we find a crucial
difference in the spectral function D� corresponding to
magnetism. Namely, D� is concentrated in a narrow range
of energy when the system exhibits the saturated ferro-
magnetism for � � 4=20; 5=20; � � � ; 9=20 (and 1��). In
contrast, when the saturated ferromagnetism is absent, D�

is spread over a region of energy. Intuitively, the spectral
function D� corresponds to the density of states occupied
by electrons. The narrow distribution of D� compared to
03640
the bandwidth indicates a variant of the narrow or nearly
flat-band ferromagnetism [6].

In fact, there is more difference inD� between the cases
with and without saturated ferromagnetism than what is
visible in Fig. 2. D� vanishes completely below a certain
threshold (!=t � �0:550, �0:229, and �0:474 for � �
4=20, 6=20, and 9=20, respectively) when the system ex-
hibits the saturated ferromagnetism. In contrast, there is a
continuous ‘‘shoulder’’ of low intensity (invisible in Fig. 2)
down to much lower energy !=t
�20 when saturated
ferromagnetism is absent. This seems to be consistent
again with our interpretation.

In particular, for � � 4=20�� ne�, the spectral function
D� is localized within a narrow energy band below an
apparent gap around the Fermi level. This appears similar
to the quantum Hall ferromagnet at � � 1 in the continuum
[16]. In this case, the statistical transmutation mechanism
and the flat-band mechanism appear indistinguishable.

Now let us discuss the saturated ferromagnetism ob-
served in the high electron density regime, at � � ne �
18=20. Figure 2(b) shows the spectral functions in this
case. Clearly, the spectral function D� spreads over almost
the entire bandwidth even though the system does exhibit
the saturated ferromagnetism. Thus the ferromagnetism at
� � ne � 18=20 is difficult to be understood in terms of
the flat-band mechanism, and appears to be exclusively due
to the statistical transmutation mechanism. In fact, chang-
ing the value of� destroys the saturated ferromagnetism at
this electron density, as expected from the statistical trans-
mutation scenario.

In order to further confirm the statistical transmutation
scenario at � � ne, we define the following operators:
b‘� � e�iJ ‘c‘� and by‘� � cy‘�e

iJ ‘ , where J ‘ �

�m
P
i��‘��‘ini with ni �

P
��";#c

y
i�ci�. In general, m de-

notes the number of magnetic-flux quanta, and we set m �
1 in the present case. �‘i is the argument of the vector
drawn from site i to site ‘. Note that the relation �‘i �
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�i‘ � �� holds for i � ‘. Then we can prove that these
operators satisfy the commutation relations of bosons for
two different sites. There is a large freedom in determining
explicit values of �i‘. Here we follow a prescription intro-
duced in Ref. [23], although this prescription unavoidably
breaks translation invariance of a periodic cluster. The
order parameter for the condensation of the composite
bosons may be defined by

OB �
1

N

X
‘

jh�0

�
N" � 1; N#;��

1

N

�
jb‘"j�0�N"; N#;��ij

2:

(5)

We again setN" � N# � Ne=2 forNe even, andN" � N# �
1 � �Ne � 1�=2 for Ne odd. Figure 3(a) shows OB as a
function of ne�� ��. The order parameter has a pro-
nounced enhancement in both the high-density region
(0:7< ne < 1) and the low-density one (0< ne & 0:3).
Figures 3(b) and 3(c) depict the � dependence of OB for
ne � 6=20 and 16=20, respectively. We find a salient
growth at � � ne for both densities. We have also ob-
served for ne � 6=20 that the order parameter given by
Eq. (5) with m � �1 has a peak at � � 1� ne. These
results again support the ferromagnetism based on the
statistical transmutation.

Finally, we discuss the region 0:6 & ne & 0:7, where the
saturated ferromagnetism is absent in spite of� � ne. As a
candidate of the competing order, we consider the spin
chirality [24] defined by the order parameter �ch �

�1=N�
P
‘hS ‘ � S‘�ŷ 	 S‘�x̂i, where x̂ (ŷ) is the unit vector

along x (y) direction, and h� � �i denotes the expectation
value in the ground state. In fact, Nagaoka ferromagnetism
in the single-hole case is known to be destroyed by devel-
opment of the spin chirality in the presence of a perpen-
dicular magnetic field [18]. Along the line � � ne, we
have confirmed that the spin chirality vanishes when the
system exhibits saturated ferromagnetism. On the other
hand, the chiral order is indeed developed when the satu-
rated ferromagnetism is absent (not shown).

In summary, we have calculated the total spin of the
ground state in the U ! 1 Hubbard model with magnetic
flux (�) perpendicular to a square lattice and revealed
regions of saturated ferromagnetism. The saturated ferro-
magnetism at � � ne is argued to be due to formation of
spinful composite bosons. Statistical transmutation may
therefore play a key role in ferromagnetism in strongly
correlated systems, just as it did in fractional quantum Hall
effect.

The present mechanism may be relevant to future ex-
periments on an artificial crystal of a square lattice with
quantum dots (i.e., a quantum dot superlattice) [25]. A
large lattice constant of such a crystal would enable us to
observe the magnetic-field effect at a modest magnetic
field of a few Tesla. In this situation, the orbital motion
rather than the Zeeman effect could be essential for the
03640
emergence of ferromagnetism. Another possibility is to
induce the effective gauge field internally without an ap-
plied magnetic field [26].
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