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Helicity Order: Hidden Order Parameter in URu2Si2
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We propose that the ‘‘hidden order parameter’’ in URu2Si2 is a helicity order that must arise if the
Pomeranchuk criteria for the spin-antisymmetric Landau parameters with respect to the stability of a
Fermi liquid state are violated. In a simple model, we calculate the specific heat, the linear and nonlinear
magnetic susceptibilities, and the change of transition temperature in a magnetic field with such an order
parameter, and obtain quantitative agreement with experiments in terms of two parameters extracted from
the data. The peculiar temperature dependence of the NMR linewidth and the nature of the loss of
excitations in the ordered phase seen by neutron scattering are also explained, and experiments are
suggested to directly confirm the proposed order parameter.
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The ‘‘hidden order’’ phase in the heavy fermion com-
pound URu2Si2 below the second order transition at 17.5 K
[1] has remained a puzzle for about 20 years. The magni-
tude of the specific heat at the transition is equivalent to
that of ordering of a moment of about 0:5�B per unit cell.
No change in spin-rotational symmetry or lattice transla-
tional symmetry consistent with this specific heat has been
discovered. Detailed neutron diffraction experiments [2]
reveal a moment of only about 0:03�B per unit cell, which
as NMR and �SR experiments [3] reveal, is due to the
presence of a second phase. Some very interesting pro-
posals for new types of order have been made [4–6], which
have not been supported by experiments designed to look
for them.

Some of the other properties measured at the transition
to the ‘‘hidden order’’ phase and in it are the linear mag-
netic susceptibility which only changes slope at the tran-
sition, the nonlinear magnetic susceptibility which shows a
singularity at the transition similar to that of the specific
heat [7], the change of the transition temperature with an
applied magnetic field [8,9], the loss of low energy exci-
tations observed by neutron scattering for a range of wave
vectors [2,10,11] and in transport measurements [12], and
the NMR relaxation rate [13] which exhibits the extraor-
dinary result that there is an extra inhomogeneous relaxa-
tion rate in the ordered phase which increases below the
transition temperature proportional to an order parameter.

We suggest here that the transition is to a state proposed
[14] as a cure to the spin-antisymmetric Landau-
Pomeranchuk instability (LPI) of the Fermi liquid. For
reasons that will be clear, we call such states helicity-
ordered states [15]. We calculate the thermodynamic prop-
erties near the transition and account quantitatively for the
observed thermodynamic features and qualitatively for the
NMR and the excitation spectra with parameters extracted
from the experiments. We also suggest experiments that
can provide direct evidence for the proposed phase.

In Landau’s Fermi liquid theory [16], the change in the
free energy due to a small change of the equilibrium
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distribution function �n�k�� is
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The interaction functional f�k�;k0�0� has spin-symmetric
(s) and spin-antisymmetric (a) parts:

f�k�;k0�0� � fs�k�;k0�0� � fa�k�;k0�0�: (2)

The coefficients of an expansion of fs;a in terms of the
irreducible representations of the Fermi surface are the
Landau parameters Fs;al , in terms of which Pomeranchuk
[17] obtained a set of conditions for the stability of the
Fermi liquid: 1� �2l� 1��1Fs;al > 0. Any violation of
these conditions leads to a Landau-Pomeranchuk instabil-
ity, which must be cured by a broken symmetry in corre-
sponding irreducible representation l and spin symmetry s
or a. For example, the ferromagnetic instability occurs for
Fa0 ! �1. Spin-symmetric instabilities in finite l channels
have attracted much recent interest [14,18,19]. A spin-
ordered state, which is anisotropic in momentum space
(without change in translational symmetry) is the obvious
cure to the finite l antisymmetric LPIs [14,20]. We develop
this idea here; we find that besides the LPI criteria, addi-
tional conditions must be satisfied so that the instability is
of second order.

Consider the model Hamiltonian,
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where �0
k is the spectrum of a noninteracting Fermi gas, ~�

Pauli matrices. q is the momentum transfer; of interest is
the instability in the forward scattering limit (q! 0). Jk;k0

is the interaction in spin-antisymmetric channels, which
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FIG. 1 (color online). Schematic Fermi surface for the two
different spin directions. The dotted line denotes the Fermi
surface of the paramagnetic phase with vanishing order parame-
ter while the solid lines illustrate the Fermi surface of the
helicity-ordered phase.
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can be expanded as Jk;k0 �0� �
P
lJlPl�cos�k;k0 �, where

�k;k0 is the angle between k and k0, and Pl�x� are
Legendre polynomials.

In the normal state of a Fermi liquid, helicity is disor-
dered since the spin-quantization axes at each k can be
independently rotated. The proposed order parameter for
the model has the general form [14,20]:

h�n�k; ��i � � �D�k̂f�: (4)

The spin-quantization axis is thereby fixed in relation to the
direction on the Fermi surface [21].

We need consider only one specific l channel and write
Jk;k0 in a separable form JlPl�cos�k�Pl�cos�k0 �. The sim-
plest order parameter has Dz�k̂f� � 0, so that the associ-
ated energy parameter is

�l � hJl�zDz�k̂f�i �

�X
k

JlPl�cos�k��nk" � nk#�
�
: (5)

This Ising order parameter is especially useful to discuss
the tetragonal compound URu2Si2, which has a large an-
isotropy in the magnetic susceptibility favoring the c axis.
With Eq. (5) we have a noninteracting model with the
effective spectrum

E";#�k� � �0
k ��0H� �lPl�cos�k�; (6)

whereH is the external magnetic field, and�0 the effective
single-electron magnetic moment. Imposing the require-
ment of a constant chemical potential, the Fermi surfaces
for the up and down spins are split as schematically illus-
tration in Fig. 1.

We calculate the free energy following standard meth-
ods. The following results are for l � 1, but can easily be
generalized to higher-l channels. The free energy can be in
general separated into two parts,

F � F 0�T;H� �Fm�T;H;�1�; (7)

where F 0 describes a paramagnetic phase (�1 � 0). The
specific heat and the magnetic susceptibility [M � �1H �
��3=3!�H3 � � � � , �1 and �3 are the linear and nonlinear
spin susceptibilities, respectively] can be easily obtained.
Including terms of O�H2�, O�T2�, and the variation of the
density of states ���� near the chemical potential to
O	�00��F�
, we obtain
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For noninteracting electrons, these are standard results
(see, e.g., Ref. [22]); we list them here to use them to
extract parameters from the normal state experimental
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results. For interacting electrons (in the limit of zero field)
they are multiplied by Landau parameters, m�=m for the
specific heat, �m�=m�=�1� Fa0 � for the susceptibility and
�m�=m�=�1� 4Fa0� for the nonlinear susceptibility.
Fm�T;H;�1�, is the additional contribution to the free

energy for �1 � 0. Expressing it in series of the order
parameter �1 gives
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When H � 0 and T � 0, the criterion to have a continu-
ous phase transition is A< 0 and B> 0, i.e.,

1�
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3�2 > 0: (10)

The first gives J1 < 0 and �jJ1j> �2l� 1�=2 (here l � 1),
which is precisely the LPI criterion. The second is an
additional criterion, on the form of the density of states
at the Fermi surface to have a second order transition. If
B< 0, one must expand the free energy to terms of order
�6

1. In that case, a first-order phase transition is favored.
At H � 0, the critical temperature is given by
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This, together with Eq. (10), requires �00=� > �02=�2. In
the presence of a small magnetic field, Tc varies as

THc  Tc	1� �H=H0�
2
;
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(12)
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FIG. 2. The experimental data of direct relevance to the cal-
culations in this Letter. The specific heat data (a) are extracted
from Fig. 1 in Ref. [1]. In the specific heat data a contribution to
C=T proportional to T2, presumably mostly due to phonons, has
been subtracted. Data of the linear (b) and nonlinear (c) magnetic
susceptibilities (along the c axis) are extracted from Fig. 2 in
Ref. [7]. (d) The inhomogeneous linewidth of Si-NMR for
magnetic fields in the c direction and in the plane, which is
extracted from Fig. 4 in Ref. [13]; the solid line is the fitting
function 
 � 12	1� �T=Tc�2
1=2�G�.
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where h� � 	�
00=�� �02=�3�2�
=��00=�� �02=�2�.

Below Tc we have the nontrivial solution �2
1 � �A=B,

i.e., a helicity-ordered state. The changes in some thermo-
dynamical quantities at and below Tc from their values for
T > Tc are calculated to be
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where g� � ��
00=�� �02=�2�2=	�00=�5�� � �02=�3�2�
.

The specific heat shows, of course, a characteristic mean-
field discontinuity at the transition point; more interesting
is the fact that �3 also shows a discontinuity while the
linear magnetic susceptibility shows merely a change of
slope. A singularity in the nonlinear magnetic susceptibil-
ity is to be expected for any order parameterOwhen a term
jOj2H2 is allowed in the free energy. Usually the coeffi-
cient of this term is so small that the singularity in �3 is not
noticed. What is special about URu2Si2 is that the dimen-
sionless mean-field jump in �3 is similar to the dimension-
less mean-field jump in the specific heat. This and several
other properties are quantitatively explained below.

We have ignored the Landau parameters in the dimen-
sionless quantities in Eqs. (8) and (13). The reason is that
the change in the Landau parameters near the transition
may be shown following Leggett [23], for the case of
transition in superfluid 3He, to be proportional to ���1�

2.
To this order, assumed� 1, they vanish in dimensionless
quantities.

In the following, we try to fit the experimental data: the
specific heat from Ref. [1], and the linear and nonlinear
magnetic susceptibilities from Ref. [7]. The data are shown
in Fig. 2 for the reader’s convenience. From Eqs. (8) and
(13), in addition to the prefactors, 	0 �

2�2

3 �k2
B, �0 �

2�2
0�, ~�0 � 3!�4

0�, all other quantities can be determined
by two additional dimensionless variables, C1 � ��

00=��
�02=�2���2=6��kBTc�

2 and C2 � ��
02=�2�=��00=��, where

Tc is taken as 17.5 K.
Consider the linear magnetic susceptibility. It is continu-

ous with a change in the slope at the transition point, which
is consistent with the result in Eq. (13b). Also notice that in
the normal state it shows a significant linear temperature
dependence besides the constant Pauli term. This is, in-
deed, required by the theory in order that there be a second
order transition to the helicity-ordered phase [see Eq. (10)].
Near Tc,

�1�T * Tc� � �0�1� C1� � 2�0C1�T � Tc�=Tc;

��1�T & Tc� � �0
10

9
C1

1� C2

1� 5C2=3
�T � Tc�=Tc:

(14)

By fitting them with the experimental data, we can extract
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C1  0:35; C2  0:52 (15)

(with �0  63:0 emu=mole T). We then can calculate
other thermodynamic quantities. At Tc, the discontinuities
of the specific heat coefficient (	 � C=T) and the non-
linear magnetic susceptibility are calculated from Eq. (13)
to be

�	�Tc�=	0 � 1:4; ��3�Tc�=�3�T�c � � 2:1; (16)

while the corresponding experimental quantities from
Fig. 2 are approximately 1.5 and 2.4, respectively. In finite
magnetic field, Eq. (12) predicts that Tc decreases as
�H=H0�

2, where H0 � 38:2T if we take �0 to be one
Bohr magneton. This again, is in agreement with the ex-
periments, where H0 is estimated as 48.5(1) T in Ref. [8],
while 35.3 T in Ref. [9]. We can also determine the order
parameter (H � 0)

�1�T� � 77	1� �T=Tc�2
1=2 K: (17)

To summarize, we get the qualitatively correct behavior
of the linear susceptibility, and extracting two parameters
from it can explain quantitatively the relative jump in the
specific heat and that of the nonlinear susceptibility as well
as the characteristic field for the suppression of the tran-
sition. (The fact that a simple model for the Fermi surface
of the paramagnetic phase gives these quantities quite well
is doubtless due to the fact that we are comparing dimen-
sionless quantities.) We do not do well on the specific heat
just below Tc; our slope is about a factor of 2 smaller than
the straight line fit one might make in Fig. 2. Note that the
proposed order parameter has an Ising symmetry. So, the
actual exponents in the critical regime of the transition are
expected to be that of an Ising model in three dimensions;
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for example, the specific heat is expected to show a lambda
shape. While further experiments are required to test this,
the measured specific heat is not inconsistent with such a
form (see Fig. 2). In such a case, a mean-field fit to the data
always gives a slope smaller than the experiment.

The values of C1; C2 required above imply that �00=� 
2�02=�2; i.e., the chemical potential in the normal phase
lies near a local minima of the density of states. This is
consistent with the density of states calculated by band-
structure calculations [24].

Let us next consider the NMR measurements. Si-NMR
[13] reveals no change in Knight shift but an increase in the
inhomogeneous linewidth below Tc, which within experi-
mental uncertainty can be fitted to be / 	1� �T=Tc�2
1=2

[see Fig. 2(d)], i.e., proportional to an order parameter.
This is quite unusual. We note first that in a perfectly pure
sample, we expect no change in Knight shift or linewidth.
In the presence of impurities, which locally break the
reflection symmetry about the basal plane, a local ferro-
magnetic region forms, as is evident from Fig. 1. The
magnitude of the local field then is proportional to the
order parameter, but its magnitude as well as direction
are random. This gives no Knight shift but a linewidth
consistent with observations. The magnitude depends on
details of the defect, but a O�0:5�B� defect, expected from
the magnitude of the order parameter, need be present only
in concentrations of a few parts in a thousand to produce
the observed linewidth of order 10 Gauss. The observed
linewidth is almost independent of the direction of the
applied magnetic field. This can be shown to occur for
generic distribution of impurities about the Si sites [25].

We intend to calculate the excitation spectra in the
future. One can, however, see that, given the Fermi sur-
faces shown in Fig. 1, a decrease in inelastic scattering
below a certain characteristic energy of the order of �1 is
expected for spin-flip particle-hole excitations. This is
what is observed in neutron scattering [2,10,11]. A quanti-
tative calculation requires a more realistic model of the
normal state Fermi surface than used here. We note that the
characteristic magnitude of this energy scale observed in
inelastic neutron scattering experiments is �70 K [2],
which compares well with our estimate [see the coefficient
in Eq. (17)].

Finally, we turn to how the proposed order parameter
may be directly observed. On applying an electric field
parallel to the c axis, a spin current would be generated but
no such effect should occur on applying electric field
parallel to the basal plane [27]. Another direct possibility
is through spin-polarized positron annihilation suggested
to us [28].

We acknowledge useful discussions with V. Aji,
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J. Mydosh, and A. Ramirez.
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