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Energy Anomaly and Polarizability of Carbon Nanotubes
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The energy of Fermi sea perturbed by an external potential is analyzed with the help of an energy
anomaly. Using an example of massive Dirac fermions on a circle, we illustrate how the anomaly accounts
for the contribution of the deep-lying states. The energy anomaly is a universal function of the applied
field and is related to known field-theoretic anomalies. Applied to the transverse polarizability of carbon
nanotubes, the anomaly reveals universality and scale invariance of the response dominated by �
electrons. The electron band transformation in a strong field-effect regime is predicted.
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Fermion anomalies are universal contributions to the
low-energy properties of field theory originating from the
bottom of the filled Fermi-Dirac sea. The primary ex-
amples in high-energy physics are the spontaneously gen-
erated photon mass in d � 1� 1 [1] and the Adler-Bell-
Jackiw chiral anomaly [2] relating the decay of a pion into
two photons to the number of quark colors [3]. Several
instances of anomalies are known in solid state physics,
with the chiral anomaly manifest in transport [4] and in
fermion number fractionalization [5], and the parity anom-
aly in d � 2� 1 linked to the quantum Hall effect [6].

Here we describe a new manifestation of fermion anom-
aly, appearing in the total energy of Fermi sea in the
presence of an external field. While the net energy of
Fermi-Dirac vacuum depends on ultraviolet cutoff, i.e.,
on the behavior at the bottom of the band, the external
field-dependent part of the energy is cutoff insensitive. The
latter energy is naturally divided into two parts, one given
by a sum of the energy shifts of filled states near the Fermi
level and another, equally important, representing the cu-
mulative effect of the states deep below the Fermi level.
The latter, anomalous part, traced to Schwinger anomaly
[1], has a universal form and can be expressed through the
properties near the Fermi level.

The Fermi sea energy field dependence is the physical
quantity central for many physical properties of materials.
As an application, below we consider the response of the
carbon nanotube (NT) � electron band to perpendicular
electric field. The aforementioned separation into the nor-
mal and anomalous parts enables one to handle energy in a
fully general and, at the same time, case-specific way,
taking full account of the level quantization, curved ge-
ometry, spatial inhomogeneity, etc. The NT � band is
described by a tight-binding model on a honeycomb lattice
[7]. Near the Fermi level, at the � band center, the NT
electrons are described by d � 2� 1 Dirac fermions mov-
ing on a cylindrical surface [8]. The Dirac model provides
a simple analytic description of NT curvature and chirality
[7,9], and of the effects of external fields [10] in both
semiconducting and metallic NTs.
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It might seem that understanding properties such as NT
polarizability should require a detailed knowledge of the �
electrons behavior on the lattice constant scale [11]. Here
we find that, to the contrary, the energy can be accurately
obtained from the Dirac model, provided the anomaly is
taken into account. Our analysis provides new insight into
NT properties: We identify the dominant role of � elec-
trons response compared to that of other orbitals, and
explain the origin of the scale invariant depolarization,
independent of the NT diameter [11–13], qualitatively
different from that of metallic and dielectric shells. Our
approach, with electron interactions included in an RPA
fashion [14], is not limited to linear response: we apply it to
study NT electron band transformation in the field-effect
regime.

The origin of the energy anomaly is exhibited most
clearly by the example of chiral fermions on a circle
�0; 2��, described by the Hamiltonian H � �i@� �U,
U � 2a cos�. In the Fourier representation jni � ein�, H
is given by an infinite three-diagonal matrix: H nn � n,
H n n�1 � a. Eliminating the potentialU by a gauge trans-
formation  ��� � e�2ia sin� ~ ���, ~H � �i@�, we see that
the eigenvalues of H are integers independent of U.

The energy anomaly arises when the interaction U is
truncated at a certain energy scale. To that end, let us
consider a more general three-diagonal matrix

Hnn � n; Hn n�1 �Hn�1 n � an (1)

(n 2 Z), with the sequence an having different limits at
n! �1: an!�1 � 0, an!�1 � a. Although now the
energy levels depend on an, the above argument for spec-
trum robustness at constant an indicates that this depen-
dence is exponentially small at large jnj. The level shifts
are significant for only a relatively small cluster of levels
around n ’ n	 where the switching of an from 0 to a
occurs.

Notably, the sum of all level shifts, � trH �
P
n��n,

depends only on the asymptotic values an!�1, while other
details of the sequence an do not matter. To see this, we
truncate the matrix H at some large positive and negative
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n � �N, in which case the trace of this �2N � 1� 
 �2N �
1� matrix is finite and explicitly a independent. Since at
N � n	, the mutual influence of the levels at n ’ n	 and
n ’ N is exponentially small, the effect on trH due to
truncating at n ’ N is negative of that due to an switching
at n ’ n	, both being universal. [The levels at n ’ �N are
unaffected by the truncation since an!�1 � 0 and H is
diagonal.] Thus the sum of the level shifts at n ’ n	
depends only on an��1 � a, giving a cutoff-independent
contribution to � trH .

The universal value Eanom � � trH can be evaluated
using slowly varying an, jdan=dnj � janj. In this case,
since the levels are unperturbed by constant an, the level
shifts will be small, which warrants using perturbation
theory. Gradient expansion an��n � �a� b�n, b �
dan=dn, yields

H � �i@� � 2 �a cos�� bfei���i@�� � H:c:g:

The gauge transformation  ��� � e�2i �a sin� ~ ��� trans-
forms H into

~H � �i@� � bfei���i@� � 2 �a cos�� � H:c:g: (2)

The energies �n obtained in the lowest order of perturba-
tion theory are �n � hnj

~H jni � n� 2b �a. The sum of
these level shifts, given by a full derivative, depends only
on the asymptotic of an:

Eanom � �
X
n

2b �a ’ �
Z 1
�1

dn 2an
dan
dn
� �a2: (3)

For a complex sequence an, Eq. (3) is generalized to
Eanom � �jaj

2. The relation of this result with fermionic
energy emerges when one considers the quenching of the
external field an � a coupling to the states at the Fermi sea
bottom, modeled by an&n	 � 0. We find that the anoma-
lous contribution Eanom is universal; i.e., it depends only on
the properties near the Fermi level [15]. The anomaly
contributes additively to the energy along with the contri-
butions due to fermion mass and confinement (see below).

Electrons in a nanotube, a cylinder of radius R, are
described by d � 2� 1 massless Dirac model [8]. The
states in a transverse field, labeled by momentum k along
the tube, can be viewed as massive d � 1� 1 Dirac fer-
mions on the NT circumference, the circle 0< y< 2�R:

HD � �i@v�̂@y � @vk�̂�U�y�; (4)

with U�y� the transverse field potential and @vk the Dirac
‘‘mass.’’ (Here �̂ � ��x and �̂ � �y [7].) We assume
generic quasiperiodic boundary conditions  �y� 2�R� �
e2�i� �y�. At U  0, the energy levels

��n � �
��������������������������������������������
�2
R�n� ��

2 � �@vk�2
q

; �R  @v=R;

describe NT subbands. The phase � determines NT prop-
erties: � � � 1

3 for semiconducting NT, � � 0 for metallic
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NT, and j�j � 1 for the tubes with a small gap induced by
curvature [9] or by parallel magnetic field [10].

For the Fermi sea energy change at finite U, the naive
answer would be the sum over occupied states W �P
���n , ��n  �njU � �njU�0. The level shifts ��n be-

come very small away from the band center, so that the
sum givingW converges at jnj � kR: In this limit, with the
contribution of finite mass being negligible, the Dirac
problem (4) decouples into two chiral fermion modes,
each having U-independent spectrum. However, despite
the absence of level shifts, the states with large jnj con-
tribute to the U-dependent energy via anomaly due to the
bandwidth cutoff, �@v=R�n	 � �10 eV for carbon. As
described above, the anomaly depends only on the proper-
ties near the band center:

Eanom � �
Nf

2�@v

Z 2�R

0
U2�y�dy; (5)

where Nf � 4 is the number of electron flavors associated
with spin and the Dirac points K, K0 [7]. Note that the
energy (5) is additive for multiple fermion flavors, contrary
to fermion-doubling cancellation typical of the chiral
anomaly effects [16].

One can interpret Eq. (5), somewhat loosely, as a coun-
terterm that eliminates the nonphysical contribution of
infinite Fermi sea in the model (4), i.e., the states outside
the carbon band. A photon mass m2

� � e2=� appears
in d � 1� 1 QED [1] after integration over massless
fermions. Equation (5) exhibits a similar effect in the
Dirac system in an external electromagnetic field eA	 �
�U�y�; 0�, with the mass term

R
d2x 1

2m
2
�A

2
	  �

R
Eanomdt

in the action. (We point out a distinction of our approach
and Coleman’s analysis [17] of the massive Schwinger
model in external field, which yields an effective action
containing the field intensity rather than potential.)

The energy anomaly is related to the chiral anomaly in
d � 1� 1, since in this case the chirality �5 � �̂ enters
the Hamiltonian (4). Such a relation can be established via
the change in the functional measure [18]. We note that a
chiral gauge transformation (@ � v � 1)

 �y� � e�i�
5
�y� ~ �y�; 
 �

Z y
dy0U�y0�; (6)

preserves the boundary conditions on  , turning (4) into

~HD � �i�̂@y � ke2i�̂
�y��̂: (7)

The anomaly (5) arises from the Jacobian of the trans-
formation (6). Consider infinitesimal change of the back-
ground field U�y� by �U�y�, which yields  0 � ei�

5��y� ,
��y� 

R
y dy0�U�y0�. The corresponding Jacobian J �

expf2i
R
dtdyA��y�g [19] changes the action by�i lnJ �

��Eanomt, yielding �Eanom �
1
�

R
dy�@yU, with A �

anom tr�5 � 1
2� �

	�F	� � �@yU�y�=2� the chiral
anomaly [3]. Integration by parts gives the variation
�Eanom � �

1
�

R
dyU�U, from which the result (5) fol-
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FIG. 1 (color online). Partial dipole moment P�k� �
�d�E0�k� � Eanom�=du as a function of k, obtained from (11)
for semiconducting NT, where u � eER2=@v is dimensionless
field. Note the cancellation between E0�k� and the anomaly (5) at
kR� 1, enforcing convergence of P �

R
P�k�dk=2�. Note also

that P�k! 0� is dominated by the anomaly, since E0 � 0 at k �
0 due to the chiral gauge invariance (6). Inset: Dipole moment P
per one fermion flavor versus u for metallic and semiconducting
NT. Straight lines represent weak field linearization (12). Arrow
marks the field u ’ 1:2 for which velocity changes sign in
metallic NT (see text and Fig. 2).
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lows. This approach can be extended to include electron
interactions.

Turning to the NT response to transverse electric field,

U�y� � �eER cos�y=R�; (8)

we relate polarizability to the sum of Stark shifts

E0�k� �
X
n

��n�k�; (9)

��n�k� � �n�k�jE � �n�k�jE�0, taken over all occupied
states, with k the electron momentum along the tube. We
obtain the shifts ��n�k� from the Hamiltonian (4). In this
calculation, the anomaly (5) must be added to account for
the finite band cutoff, formally absent in (4).

The main effect of electron interaction is depolarization,
i.e., screening of the field inside NT. To obtain the RPA
screening function [11,14] of the NT cylinder, we first
show how the problem is reduced to the calculation of
electron energy in the presence of an external field. The
Gauss’s law relates the fields inside and outside the tube
with the induced surface charge density �,

E ext � E � 1
2 4�Nf�; � � P=��R2�; (10)

where P is the dipole moment per flavor and per unit NT
length, and the factor 1=2 accounts for depolarization in
cylindrical geometry. In Eq. (10) we projected the actual
charge density on the cos’ harmonic, ’  y=R, as
��’� ! Nf� cos’, ignoring higher order harmonics. The
problem is then reduced to evaluating the dipole moment,
given by P � �dW�E�=dE, where W�E� is one fermion
flavor energy as a function of the inner field,

W � N�1
f

Z 1
�1
fE0�k� � Eanomg

dk
2�

: (11)

Combining this with Eq. (10), and using dimensionless
u � eER=�R, we obtain uext � u� 2Nf

e2

@vP �u�. Once
the dipole moment P �u� is known, this relation determines
the inner field u in terms of the outer field uext.

Taking the Stark shifts ��n�k� to the lowest order in E
and evaluating the integral over k (see Fig. 1), we obtain

W � �
�
2
u2; � �

�
0:196 . . . for � � 1=3;
0:179 . . . for � � 0:

(12)

Notably, the linear relation P � �u holds up to very large
fields u� 1 (Fig. 1, inset), giving the depolarization

E ext �

�
1� 2Nf�

e2

@v

�
E: (13)

With e2=@v � 2:7 this gives Eext=E � 5:24 for � � 1=3,
and Eext=E � 4:87 for � � 0, in excellent agreement with
the full tight-binding calculations [11].

The screening (13) is radius independent and is nearly
the same in the metallic and semiconducting NTs. The
latter is not surprising: screening is absent in a single 1d
mode approximation, since polarizability is related to di-
polar transitions between different subbands. The scale
03640
invariance of (13) obtained for a hollow NT cylinder
resembles depolarization in a massive dielectric cylinder
[20–22]. The dipole moment of� electrons, found to scale
with R2, should be contrasted to P / R for a hollow
dielectric shell. The universal scale invariant result (13)
reflects the dominant role of � electrons in transverse
response as compared to other carbon orbitals.

To emphasize the role of anomaly in this calculation, we
note that omitting this contribution would have led to a
wrong sign of the response and also to a divergence.
Indeed, because of an upward shift of the filled levels ��n
(Fig. 2), we have P 0 � dE0=du > 0, corresponding to an
unphysical ‘‘diamagnetic’’ polarization sign. Also, the k
dependence E0�k� causes an ultraviolet divergence in the
integral P �

R
P�k�dk=2�, since E0�k� increases with jkj,

saturating at jkjR� 1 at an asymptotic value 1
2 u

2. Both
difficulties are resolved by taking into account the negative
Eanom � �

1
2 u

2. The resulting integral (11) converges after
E0�k� is offset by Eanom (Fig. 1).

To illustrate the effect of the transverse field, here
we examine the NT electron spectrum. The changes
are most dramatic in a strong field [12], which mixes
different NT subbands, u ’ 1, or eER ’ �R, E�MV=cm� ’
5:26=R2 �nm2�. In metallic NTs the electron velocity v �
d�=dp decreases and can even reverse sign, causing Fermi
surface breakup. This could lead to interesting many-body
effects such as the Luttinger correlations increase due to
enhanced e2=@v, or instability with respect to exciton
formation for the negative-v states. Semiconducting NTs
exhibit the effective mass sign change, accompanied by
2-3
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FIG. 2 (color online). Electron bands transformation in the
strong field-effect regime, u � eER=�R � 1. Top: Velocity re-
versal in metallic NT occurs at u > uc � 1:2. Bottom: Effective
mass sign change in semiconducting NT at u > uc � 0:62. The
bands are shown for u below and above the critical value. Inset:
Energy gap suppression in a semiconducting NT.
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field-induced suppression of the excitation gap (Fig. 2) that
could be manifest in activated transport. The above screen-
ing calculation provides an estimate for the fields neces-
sary to observe these effects. The relatively small outer-to-
inner field ratio ’ 5, as well as availability of NTs of a few
nm radius, puts the required voltage across the tube in a
feasible range of a few volts.

In summary, we considered the energy of the Fermi sea
for Dirac fermions in an external field, expressed via
energy anomaly through low-energy properties. The en-
ergy anomaly, applied to the polarizability of nanotubes,
provides insight in their response properties, notably the
scale invariance of depolarization, the difference of screen-
ing in semiconducting and metallic NT, and the relative
importance of the � band compared to other carbon bands.
Electron bands exhibit a dramatic change in the strong
field-effect regime.
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